ﻻ يوجد ملخص باللغة العربية
We present a theoretical study on polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) emitted from $1s$ orbital of oxygen atom of dissociating dicationic carbon monoxide CO$^{2+}$. Due to the polarization-average, contribution of direct wave of photoelectron which has the biggest contribution to MFPADs is removed, so that PA-MFPADs clearly show the detail of scattering image of the photoelectron. As a result, it is necessary to employ well precise theory for the continuum state for the theoretical analysis. In this study, we applied our Full-potential multiple scattering theory, where the space is partitioned by using Voronoi polyhedra and truncated spheres to take into account the electron charge density outside the physical atomic spheres. We did not use spherical harmonic expansion of the cell shape functions to avoid convergence problems.The potentials in scattering cells are prepared employing Multiconfigurational Second-Order Perturbation Theory Restricted Active Space (RASPT2) method in order to take into account the influence of core hole in the electron charge density in the final state to realize realistic relaxation. We showed that the Full-potential treatment plays an important role for the PA-MFPADs at 100 eV of kinetic energy of photoelectron. Instead, the PA-MFPADs are not sensitive to type of major excited state in the Auger final state.We also studied the dynamics of CO$^{2+}$ dissociation. We found that the PA-MFPADs dramatically change its shape as a function of C-O bond length.
Recent developments of high-reputation-rate X-ray free electron lasers (XFELs) such as European XFEL and LSCS-II, combined with coincidence measurements at the COLTRIMS-Reaction Microscope, is now opening a door to realize a long-standing dream to cr
The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF
We present an experimental and theoretical study of core-level ionization of small hetero- and homo-nuclear molecules employing circularly polarized light and address molecular-frame photoelectron angular distributions in the lights polarization plan
We describe the results of experiments and simulations performed with the aim of extending photoelectron spectroscopy with intense laser pulses to the case of molecular compounds. Dimer frame photoelectron angular distributions generated by double io
We investigate angular emission distributions of the 1s-photoelectrons of N$_2$ ionized by linearly polarized synchrotron radiation at $h u=40$ keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured