ﻻ يوجد ملخص باللغة العربية
Recent developments of high-reputation-rate X-ray free electron lasers (XFELs) such as European XFEL and LSCS-II, combined with coincidence measurements at the COLTRIMS-Reaction Microscope, is now opening a door to realize a long-standing dream to create molecular movies of photo-induced chemical reactions of gas-phase molecules. In this paper, we theoretically propose a new method to experimentally visualize dissociation of diatomic molecules via time-resolved polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) measurements using the COLTRIMs--Reaction Microscope and two-color XFEL pump-probe set-up. The first and second order scattering theories with the Muffin-tin approximation give us simple EXAFS type formula for the forward and backward scattering peaks in the PA-MFPADs structure. This formula acts as an experimentally applicable bond length ruler by adjusting only three semi-empirical parameters from the time-resolved measurements. The accuracy and applicability of a new ruler equation are numerically examined against the PA-MFPADs of CO<sup>2+</sup> calculated by Full-potential multiple scattering theory as a function of the C-O bond length reported in the preceding work. The bond lengths retrieved from the PA-MFPADs via the EXAFS formula well reproduce the original C-O bond lengths used in the reference <i>ab-initio</i> PA-MFPADs with accuracy of 0.1 {AA}. We expect that time-resolved PA-MFPADs will be a new attractive tool to make molecular movies visualizing intramolecular reactions.
We present a theoretical study on polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) emitted from $1s$ orbital of oxygen atom of dissociating dicationic carbon monoxide CO$^{2+}$. Due to the polarization-average, co
We investigate angular emission distributions of the 1s-photoelectrons of N$_2$ ionized by linearly polarized synchrotron radiation at $h u=40$ keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured
The application of a matrix-based reconstruction protocol for obtaining Molecular Frame (MF) photoelectron angular distributions (MFPADs) from laboratory frame (LF) measurements (LFPADs) is explored. Similarly to other recent works on the topic of MF
The fragmentation of carbon monoxide dimers induced by collisions with low energy Ar$^{9+}$ ions is investigated using the COLTRIMS technique. The presence of a neighbor molecule in the dimer serves here as a diagnostic tool to probe the lifetimes of
Using a quantum wave packet simulation including the nuclear and electronic degrees of freedom, we investigate the femtosecond and picosecond energy- and angle-resolved photoelectron spectra of the E($^1Sigma_g^+$) electronic state of Li$_2$. We find