ﻻ يوجد ملخص باللغة العربية
We study the effects of adding the Coulomb interactions to the harmonic oscillator (HO) approximation of the heavy parton propagating through the quark-gluon plasma (the extension to QCD of the Molliere theory). We explicitly find the expression for the transverse momentum distribution of the gluon radiation of the heavy quark propagating in the quark gluon plasma in the framework of the Moliere theory, taking into account the BDMPSZ radiation in the harmonic oscillator (HO) approximation, and the Coulomb logarithms described by the additional logarithmic terms in the effective potential. We show that these Coulomb logarithms significantly influence the HO distribution, derived in the BDMPSZ works, especially for the small transverse momenta, filling the dead cone, and reducing the dead cone suppression of the heavy quark radiation (dead cone effect). In addition we study the effect of the phase space constraints on the heavy quark energy loss, and argue that taking into account of both the phase space constraints and of the Coulomb gluons reduces the dependence of the heavy quark energy loss on its mas in the HO approximation.
We study the energy loss of a heavy quark propagating in the Quark-Gluon Plasma (QGP) in the framework of the Moller theory, including possible large Coulomb logarithms as a perturbation to BDMPSZ bremsstrahlung, described in the Harmonic Oscillator
We evaluate heavy-quark (HQ) transport properties in a Quark-Gluon Plasma (QGP) employing interaction potentials extracted from thermal lattice QCD. Within a Brueckner many-body scheme we calculate in-medium T-matrices for charm- and bottom-quark sca
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso
Several transport models have been employed in recent years to analyze heavy-flavor meson spectra in high-energy heavy-ion collisions. Heavy-quark transport coefficients extracted from these models with their default parameters vary, however, by up t
In this paper we study the real-time evolution of heavy quarkonium in the quark-gluon plasma (QGP) on the basis of the open quantum systems approach. In particular, we shed light on how quantum dissipation affects the dynamics of the relative motion