ترغب بنشر مسار تعليمي؟ اضغط هنا

A Square Equal-area Map Projection with Low Angular Distortion, Minimal Cusps, and Closed-form Solutions

46   0   0.0 ( 0 )
 نشر من قبل Matthew Petroff
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel square equal-area map projection is proposed. The projection combines closed-form forward and inverse solutions with relatively low angular distortion and minimal cusps, a combination of properties not manifested by any previously published square equal-area projection. Thus, the new projection has lower angular distortion than any previously published square equal-area projection with a closed-form solution. Utilizing a quincuncial arrangement, the new projection places the north pole at the center of the square and divides the south pole between its four corners; the projection can be seamlessly tiled. The existence of closed-form solutions makes the projection suitable for real-time visualization applications, both in cartography and in other areas, such as for the display of panoramic images.



قيم البحث

اقرأ أيضاً

56 - Zinovy Malkin 2016
A new method is proposed to divide a spherical surface into equal-area cells. The method is based on dividing a sphere into several latitudinal bands of near-constant span with further division of each band into equal-area cells. It is simple in cons truction and provides more uniform latitude step be-tween latitudinal bands than other methods of isolatitudinal equal-area tessellation of a spherical surface.
This note presents techniques to analytically solve double integrals of the dilogarithmic type which are of great importance in the perturbative treatment of quantum field theory. In our approach divergent integrals can be calculated similar to their convergent counterparts after identifying and isolating their singular parts.
Graphical Lasso (GL) is a popular method for learning the structure of an undirected graphical model, which is based on an $l_1$ regularization technique. The objective of this paper is to compare the computationally-heavy GL technique with a numeric ally-cheap heuristic method that is based on simply thresholding the sample covariance matrix. To this end, two notions of sign-consistent and inverse-consistent matrices are developed, and then it is shown that the thresholding and GL methods are equivalent if: (i) the thresholded sample covariance matrix is both sign-consistent and inverse-consistent, and (ii) the gap between the largest thresholded and the smallest un-thresholded entries of the sample covariance matrix is not too small. By building upon this result, it is proved that the GL method---as a conic optimization problem---has an explicit closed-form solution if the thresholded sample covariance matrix has an acyclic structure. This result is then generalized to arbitrary sparse support graphs, where a formula is found to obtain an approximate solution of GL. Furthermore, it is shown that the approximation error of the derived explicit formula decreases exponentially fast with respect to the length of the minimum-length cycle of the sparsity graph. The developed results are demonstrated on synthetic data, functional MRI data, traffic flows for transportation networks, and massive randomly generated data sets. We show that the proposed method can obtain an accurate approximation of the GL for instances with the sizes as large as $80,000times 80,000$ (more than 3.2 billion variables) in less than 30 minutes on a standard laptop computer running MATLAB, while other state-of-the-art methods do not converge within 4 hours.
We study power control in optimization and game frameworks. In the optimization framework there is a single decision maker who assigns network resources and in the game framework users share the network resources according to Nash equilibrium. The so lution of these problems is based on so-called water-filling technique, which in turn uses bisection method for solution of non-linear equations for Lagrange multiplies. Here we provide a closed form solution to the water-filling problem, which allows us to solve it in a finite number of operations. Also, we produce a closed form solution for the Nash equilibrium in symmetric Gaussian interference game with an arbitrary number of users. Even though the game is symmetric, there is an intrinsic hierarchical structure induced by the quantity of the resources available to the users. We use this hierarchical structure to perform a successive reduction of the game. In addition, to its mathematical beauty, the explicit solution allows one to study limiting cases when the crosstalk coefficient is either small or large. We provide an alternative simple proof of the convergence of the Iterative Water Filling Algorithm. Furthermore, it turns out that the convergence of Iterative Water Filling Algorithm slows down when the crosstalk coefficient is large. Using the closed form solution, we can avoid this problem. Finally, we compare the non-cooperative approach with the cooperative approach and show that the non-cooperative approach results in a more fair resource distribution.
A single closed-form analytical solution of the driven nonlinear Schr{o}dinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا