ﻻ يوجد ملخص باللغة العربية
Graphical Lasso (GL) is a popular method for learning the structure of an undirected graphical model, which is based on an $l_1$ regularization technique. The objective of this paper is to compare the computationally-heavy GL technique with a numerically-cheap heuristic method that is based on simply thresholding the sample covariance matrix. To this end, two notions of sign-consistent and inverse-consistent matrices are developed, and then it is shown that the thresholding and GL methods are equivalent if: (i) the thresholded sample covariance matrix is both sign-consistent and inverse-consistent, and (ii) the gap between the largest thresholded and the smallest un-thresholded entries of the sample covariance matrix is not too small. By building upon this result, it is proved that the GL method---as a conic optimization problem---has an explicit closed-form solution if the thresholded sample covariance matrix has an acyclic structure. This result is then generalized to arbitrary sparse support graphs, where a formula is found to obtain an approximate solution of GL. Furthermore, it is shown that the approximation error of the derived explicit formula decreases exponentially fast with respect to the length of the minimum-length cycle of the sparsity graph. The developed results are demonstrated on synthetic data, functional MRI data, traffic flows for transportation networks, and massive randomly generated data sets. We show that the proposed method can obtain an accurate approximation of the GL for instances with the sizes as large as $80,000times 80,000$ (more than 3.2 billion variables) in less than 30 minutes on a standard laptop computer running MATLAB, while other state-of-the-art methods do not converge within 4 hours.
Many Machine Learning algorithms are formulated as regularized optimization problems, but their performance hinges on a regularization parameter that needs to be calibrated to each application at hand. In this paper, we propose a general calibration
We examine an analytic variational inference scheme for the Gaussian Process State Space Model (GPSSM) - a probabilistic model for system identification and time-series modelling. Our approach performs variational inference over both the system state
A single closed-form analytical solution of the driven nonlinear Schr{o}dinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains.
We study power control in optimization and game frameworks. In the optimization framework there is a single decision maker who assigns network resources and in the game framework users share the network resources according to Nash equilibrium. The so
This note presents techniques to analytically solve double integrals of the dilogarithmic type which are of great importance in the perturbative treatment of quantum field theory. In our approach divergent integrals can be calculated similar to their