ترغب بنشر مسار تعليمي؟ اضغط هنا

The neutrino-floor in the presence of dark radation

45   0   0.0 ( 0 )
 نشر من قبل Marco Nikolic
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we analyse the ultimate sensitivity of dark matter direct detection experiments, the neutrino-floor, in the presence of anomalous sources of dark radiation in form of SM or semi-sterile neutrinos. This flux-component is assumed to be produced from dark matter decay. Since dark radiation may mimic dark matter signals, we perform our analysis based on likelihood statistics that allows to test the distinguishability between signals and backgrounds. We show that the neutrino floor for xenon-based experiments may be lifted in the presence of extra dark radiation. In addition, we explore the testability of neutrino dark radiation from dark matter decay in direct detection experiments. Given the previous bounds from neutrino experiments, we find that xenon-based dark matter searches will not be able to probe new regions of the dark matter progenitor mass and lifetime parameter space when the decay products are SM neutrinos. In turn, if the decay instead happens to a fourth neutrino species with enhanced interactions to baryons, DR can either constitute the dominant background or a discoverable signal in direct detection experiments.

قيم البحث

اقرأ أيضاً

Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range $[5 times10^{14} - 5 times 10^{15}]$g, we point out that the neutrino s emitted by PBHs evaporation can interact through the coherent elastic neutrino nucleus scattering (CE$ u$NS) producing an observable signal in multi-ton DM direct detection experiments. We show that with the high exposures envisaged for the next-generation facilities, it will be possible to set bounds on the fraction of DM composed by PBHs improving the existing neutrino limits obtained with Super-Kamiokande. We also quantify to what extent a signal originating from a small fraction of DM in the form of PBHs would modify the so-called neutrino floor, the well-known barrier towards detection of weakly interacting massive particles (WIMPs) as the dominant DM component.
The sensitivity of direct detection of dark matter (DM) approaches the so-called neutrino floor below which it is hard to disentangle the DM candidate from the background neutrino. In this work we consider the scenario that no DM signals are reported in various DM direct detection experiments and explore whether the collider searches could probe the DM under the neutrino floor. We adopt several simplified models in which the DM candidate couples only to electroweak gauge bosons or leptons in the standard model through high dimensional operators. After including the RGE running effect we investigate constraints from direct detection, indirect detection and collider searches. The collider search can probe a light DM below neutrino floor. Especially, for the effective interaction of $bar{chi}chi B_{mu u}B^{mu u}$, current data of the mono-photon channel at the 13 TeV LHC has already covered entire parameter space of the neutrino floor.
85 - Ciaran A. J. OHare 2021
The neutrino floor is a theoretical lower limit on WIMP-like dark matter models that are discoverable in direct detection experiments. It is commonly interpreted as the point at which dark matter signals become hidden underneath a remarkably similar- looking background from neutrinos. However, it has been known for some time that the neutrino floor is not a hard limit, but can be pushed past with sufficient statistics. As a consequence, some have recently advocated for calling it the neutrino fog instead. The downside of current methods of deriving the neutrino floor are that they rely on arbitrary choices of experimental exposure and energy threshold. Here we propose to define the neutrino floor as the boundary of the neutrino fog, and develop a calculation free from these assumptions. The technique is based on the derivative of a hypothetical experimental discovery limit as a function of exposure, and leads to a neutrino floor that is only influenced by the systematic uncertainties on the neutrino flux normalisations. Our floor is broadly similar to those found in the literature, but differs by almost an order of magnitude in the sub-GeV range, and above 20 GeV.
Both neutrinoless double beta decay and leptogenesis require neutrinos to be Majorana fermions. A relation between these two phenomena can be derived once the mechanism of neutrino mass generation is specified. We first derive the constraints on the Majorana phases by minimising the effective neutrino mass in neutrinoless double beta decay with respect to the smallest mass among the light neutrinos. Given these phases, we derive a lower bound on $M_{1}$ (the mass of the lightest of the heavy neutrinos) in the framework of Type-I seesaw mechanism, subject to the constraint that the CP asymmetry required for adequate leptogenesis is larger than $10^{-8}$. We find that $M_{1} geq 10^{10},(10^{9})$ GeV for the case of Normal (Inverted) hierarchy. We extend our analysis to the case when one of the heavy neutrinos decouples (two right handed neutrino models). In this case we find $M_{1} geq 10^{10},(10^{11})$ GeV for the case of Normal (Inverted) hierarchy.
284 - J. Syska 2013
It is noted that the crustal magnetic spectrum exhibits the signal from the partly correlated domain dipoles on the space-scale up to approximately 500 km. This suggests the nonzero correlation among the dynamical variables of the ferromagnetic magne tization phenomenon on the small domain scale inside the earths crust also. Therefore the influence of the mean of the zero component of the polarization on the CP matter-induced violation indexes is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا