ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavoured CP-asymmetry at the effective neutrino mass floor

54   0   0.0 ( 0 )
 نشر من قبل Narendra Sahu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Both neutrinoless double beta decay and leptogenesis require neutrinos to be Majorana fermions. A relation between these two phenomena can be derived once the mechanism of neutrino mass generation is specified. We first derive the constraints on the Majorana phases by minimising the effective neutrino mass in neutrinoless double beta decay with respect to the smallest mass among the light neutrinos. Given these phases, we derive a lower bound on $M_{1}$ (the mass of the lightest of the heavy neutrinos) in the framework of Type-I seesaw mechanism, subject to the constraint that the CP asymmetry required for adequate leptogenesis is larger than $10^{-8}$. We find that $M_{1} geq 10^{10},(10^{9})$ GeV for the case of Normal (Inverted) hierarchy. We extend our analysis to the case when one of the heavy neutrinos decouples (two right handed neutrino models). In this case we find $M_{1} geq 10^{10},(10^{11})$ GeV for the case of Normal (Inverted) hierarchy.

قيم البحث

اقرأ أيضاً

The sensitivity of direct detection of dark matter (DM) approaches the so-called neutrino floor below which it is hard to disentangle the DM candidate from the background neutrino. In this work we consider the scenario that no DM signals are reported in various DM direct detection experiments and explore whether the collider searches could probe the DM under the neutrino floor. We adopt several simplified models in which the DM candidate couples only to electroweak gauge bosons or leptons in the standard model through high dimensional operators. After including the RGE running effect we investigate constraints from direct detection, indirect detection and collider searches. The collider search can probe a light DM below neutrino floor. Especially, for the effective interaction of $bar{chi}chi B_{mu u}B^{mu u}$, current data of the mono-photon channel at the 13 TeV LHC has already covered entire parameter space of the neutrino floor.
We consider theories where the Standard Model (SM) neutrinos acquire masses through the seesaw mechanism at the weak scale. We show that in such a scenario, the requirement that any pre-existing baryon asymmetry, regardless of its origin, not be wash ed out leads to correlations between the pattern of SM neutrino masses and the spectrum of new particles at the weak scale, leading to definite predictions for the LHC. For type I seesaw models with a TeV scale Z coupled to SM neutrinos, we find that for a normal neutrino mass hierarchy, at least one of the right-handed neutrinos must be `electrophobic, decaying with a strong preference into final states with muons and tauons rather than electrons. For inverted or quasi-degenerate mass patterns, on the other hand, we find upper bounds on the mass of at least one right-handed neutrino. In particular, for an inverted mass hierarchy, this bound is 1 TeV, while the corresponding upper limit in the quasi-degenerate case is 300 GeV. Similar results hold in type III seesaw models, albeit with somewhat more stringent bounds. For the Type II seesaw case with a weak scale SU(2) triplet Higgs, we again find that an interesting range of Higgs triplet masses is disallowed by these considerations.
The dominant contributions to W-+ H+- production at the LHC are the tree-level b anti-b annihilation and the gg fusion. We perform for the case of the complex MSSM a complete calculation of the NLO EW corrections to the b anti-b annihilation channel and a consistent combination with other contributions including the standard and SUSY QCD corrections and the gg fusion, with resummation of the leading radiative corrections to the bottom-Higgs couplings and the neutral Higgs-boson propagators. We observe a large CP-violating asymmetry, arising mainly from the gg channel.
We discuss the correlation between the CP violating Dirac phase of the lepton mixing matrix and the cosmological baryon asymmetry based on the leptogenesis in the minimal seesaw model with two right-handed Majorana neutrinos and the trimaximal mixing for neutrino flavors. The sign of the CP violating Dirac phase at low energy is fixed by the observed cosmological baryon asymmetry since there is only one phase parameter in the model. According to the recent T2K and NO$ u$A data of the CP violation, the Dirac neutrino mass matrix of our model is fixed only for the normal hierarchy of neutrino masses.
117 - Jun-Hao Liu , Shun Zhou 2017
The possible existence of an eV-mass sterile neutrino, slightly mixing with ordinary active neutrinos, is not yet excluded by neutrino oscillation experiments. Assuming neutrinos to be Majorana particles, we explore the impact of such a sterile neutr ino on the effective neutrino mass of neutrinoless double-beta decays $langle m rangle^prime_{ee} equiv m^{}_1 |V^{}_{e1}|^2 e^{{rm i}rho} + m^{}_2 |V^{}_{e2}|^2 + m^{}_3 |V^{}_{e3}|^2 e^{{rm i}sigma} + m^{}_4 |V^{}_{e4}|^2 e^{{rm i}omega}$, where $m^{}_i$ and $V^{}_{ei}$ (for $i = 1, 2, 3, 4$) denote respectively the absolute masses and the first-row elements of the 4$times$4 neutrino flavor mixing matrix $V$, for which a full parametrization involves three Majorana-type CP-violating phases ${rho, sigma, omega}$. A zero effective neutrino mass $|langle m rangle^prime_{ee}| = 0$ is possible no matter whether three active neutrinos take the normal or inverted mass ordering, and its implications for the parameter space are examined in great detail. In particular, given the best-fit values of $m^{}_4 approx 1.3~{rm eV}$ and $|V^{}_{e4}|^2 approx 0.019$ from the latest global analysis of neutrino oscillation data, a three-dimensional view of $|langle m rangle^prime_{ee}|$ in the $(m^{}_1, rho)$-plane is presented and further compared with that of the counterpart $|langle m rangle^{}_{ee}|$ in the absence of any sterile neutrino.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا