ﻻ يوجد ملخص باللغة العربية
We present a novel particle management method using the Characteristic Mapping framework. In the context of explicit evolution of parametrized curves and surfaces, the surface distribution of marker points created from sampling the parametric space is controlled by the area element of the parametrization function. As the surface evolves, the area element becomes uneven and the sampling, suboptimal. In this method we maintain the quality of the sampling by pre-composition of the parametrization with a deformation map of the parametric space. This deformation is generated by the velocity field associated to the diffusion process on the space of probability distributions and induces a uniform redistribution of the marker points. We also exploit the semigroup property of the heat equation to generate a submap decomposition of the deformation map which provides an efficient way of maintaining evenly distributed marker points on curves and surfaces undergoing extensive deformations.
We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field.
We present a Petrov-Gelerkin (PG) method for a class of nonlocal convection-dominated diffusion problems. There are two main ingredients in our approach. First, we define the norm on the test space as induced by the trial space norm, i.e., the optima
There are plenty of applications and analysis for time-independent elliptic partial differential equations in the literature hinting at the benefits of overtesting by using more collocation conditions than the number of basis functions. Overtesting n
A novel sharp interface ghost-cell based immersed boundary method has been proposed and its parameters have been optimized against an analytical model in diffusion applications. The proposed embedded constrained moving least-squares (ECMLS) algorithm
We consider two parallel-in-time approaches applied to a (reaction) diffusion problem, possibly non-linear. In particular, we consider PFASST (Parallel Full Approximation Scheme in Space and Time) and space-time multilevel strategies. For both approa