ترغب بنشر مسار تعليمي؟ اضغط هنا

A Characteristic Mapping Method for the three-dimensional incompressible Euler equations

91   0   0.0 ( 0 )
 نشر من قبل Xi-Yuan Yin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [51]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate.



قيم البحث

اقرأ أيضاً

We present a novel particle management method using the Characteristic Mapping framework. In the context of explicit evolution of parametrized curves and surfaces, the surface distribution of marker points created from sampling the parametric space i s controlled by the area element of the parametrization function. As the surface evolves, the area element becomes uneven and the sampling, suboptimal. In this method we maintain the quality of the sampling by pre-composition of the parametrization with a deformation map of the parametric space. This deformation is generated by the velocity field associated to the diffusion process on the space of probability distributions and induces a uniform redistribution of the marker points. We also exploit the semigroup property of the heat equation to generate a submap decomposition of the deformation map which provides an efficient way of maintaining evenly distributed marker points on curves and surfaces undergoing extensive deformations.
The G-equation is a well-known model for studying front propagation in turbulent combustion. In this paper, we develop an efficient model reduction method for computing textcolor{black}{regular solutions} of viscous G-equations in incompressible stea dy and time-periodic cellular flows. Our method is based on the Galerkin proper orthogonal decomposition (POD) method. To facilitate the algorithm design and convergence analysis, we decompose the solution of the viscous G-equation into a mean-free part and a mean part, where their evolution equations can be derived accordingly. We construct the POD basis from the solution snapshots of the mean-free part. With the POD basis, we can efficiently solve the evolution equation for the mean-free part of the solution to the viscous G-equation. After we get the mean-free part of the solution, the mean of the solution can be recovered. We also provide rigorous convergence analysis for our method. Numerical results for textcolor{black}{viscous G-equations and curvature G-equations} are presented to demonstrate the accuracy and efficiency of the proposed method. In addition, we study the turbulent flame speeds of the viscous G-equations in incompressible cellular flows.
243 - Lu Zhang 2021
In this paper, an energy-based discontinuous Galerkin method for dynamic Euler-Bernoulli beam equations is developed. The resulting method is energy-dissipating or energy-conserving depending on the simple, mesh-independent choice of numerical fluxes . By introducing a velocity field, the original problem is transformed into a first-order in time system. In our formulation, the discontinuous Galerkin approximations for the original displacement field and the auxiliary velocity field are not restricted to be in the same space. In particular, a given accuracy can be achieved with the fewest degrees of freedom when the degree for the approximation space of the velocity field is two orders lower than the degree of approximation space for the displacement field. In addition, we establish the error estimates in an energy norm and demonstrate the corresponding optimal convergence in numerical experiments.
We deal with the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) preconditioner for elliptic problems discretized by the virtual element method (VEM). We extend the result of [22] to the three dimensional case. We prove polylogarithm ic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments validate the theory
In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The basis is the equivalence via the Smith factorization with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Ro bin preconditioner for the convection-diffusion equation. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be preserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ....).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا