ﻻ يوجد ملخص باللغة العربية
We introduce Domain-specific Masks for Generalization, a model for improving both in-domain and out-of-domain generalization performance. For domain generalization, the goal is to learn from a set of source domains to produce a single model that will best generalize to an unseen target domain. As such, many prior approaches focus on learning representations which persist across all source domains with the assumption that these domain agnostic representations will generalize well. However, often individual domains contain characteristics which are unique and when leveraged can significantly aid in-domain recognition performance. To produce a model which best generalizes to both seen and unseen domains, we propose learning domain specific masks. The masks are encouraged to learn a balance of domain-invariant and domain-specific features, thus enabling a model which can benefit from the predictive power of specialized features while retaining the universal applicability of domain-invariant features. We demonstrate competitive performance compared to naive baselines and state-of-the-art methods on both PACS and DomainNet.
Domain generalization (DG) aims to help models trained on a set of source domains generalize better on unseen target domains. The performances of current DG methods largely rely on sufficient labeled data, which however are usually costly or unavaila
Generalizing knowledge to unseen domains, where data and labels are unavailable, is crucial for machine learning models. We tackle the domain generalization problem to learn from multiple source domains and generalize to a target domain with unknown
Domain generalization (DG) aims to generalize a model trained on multiple source (i.e., training) domains to a distributionally different target (i.e., test) domain. In contrast to the conventional DG that strictly requires the availability of multip
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domains annotated data are unavailable. We study a novel and practical problem of Open Doma
Training deep networks with limited labeled data while achieving a strong generalization ability is key in the quest to reduce human annotation efforts. This is the goal of semi-supervised learning, which exploits more widely available unlabeled data