ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning and Meta-Analysis Approach to Identify Patient Comorbidities and Symptoms that Increased Risk of Mortality in COVID-19

360   0   0.0 ( 0 )
 نشر من قبل Mohammad Ali Moni
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus is a significant global challenge. Many individuals who become infected have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative about individual risk of severe illness and mortality. Accurately determining how comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. Methods: To assess the interaction of patient comorbidities with COVID-19 severity and mortality we performed a meta-analysis of the published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Results: Our meta-analysis identified chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictor of mortality, in terms of symptom-comorbidity combinations, it was observed that Pneumonia-Hypertension, Pneumonia-Diabetes and Acute Respiratory Distress Syndrome (ARDS)-Hypertension showed the most significant effects on COVID-19 mortality. Conclusions: These results highlight patient cohorts most at risk of COVID-19 related severe morbidity and mortality which have implications for prioritization of hospital resources.



قيم البحث

اقرأ أيضاً

COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study the important blood biomarkers for predicting disease mortality, a retrospective study was conducted on 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to February 18, 2020. Demographic and clinical characteristics, and patient outcomes were investigated using machine learning tools to identify key biomarkers to predict the mortality of individual patient. A nomogram was developed for predicting the mortality risk among COVID-19 patients. Lactate dehydrogenase, neutrophils (%), lymphocyte (%), high sensitive C-reactive protein, and age - acquired at hospital admission were identified as key predictors of death by multi-tree XGBoost model. The area under curve (AUC) of the nomogram for the derivation and validation cohort were 0.961 and 0.991, respectively. An integrated score (LNLCA) was calculated with the corresponding death probability. COVID-19 patients were divided into three subgroups: low-, moderate- and high-risk groups using LNLCA cut-off values of 10.4 and 12.65 with the death probability less than 5%, 5% to 50%, and above 50%, respectively. The prognostic model, nomogram and LNLCA score can help in early detection of high mortality risk of COVID-19 patients, which will help doctors to improve the management of patient stratification.
Introduction: For COVID-19 patients accurate prediction of disease severity and mortality risk would greatly improve care delivery and resource allocation. There are many patient-related factors, such as pre-existing comorbidities that affect disease severity. Since rapid automated profiling of peripheral blood samples is widely available, we investigated how such data from the peripheral blood of COVID-19 patients might be used to predict clinical outcomes. Methods: We thus investigated such clinical datasets from COVID-19 patients with known outcomes by combining statistical comparison and correlation methods with machine learning algorithms; the latter included decision tree, random forest, variants of gradient boosting machine, support vector machine, K-nearest neighbour and deep learning methods. Results: Our work revealed several clinical parameters measurable in blood samples, which discriminated between healthy people and COVID-19 positive patients and showed predictive value for later severity of COVID-19 symptoms. We thus developed a number of analytic methods that showed accuracy and precision for disease severity and mortality outcome predictions that were above 90%. Conclusions: In sum, we developed methodologies to analyse patient routine clinical data which enables more accurate prediction of COVID-19 patient outcomes. This type of approaches could, by employing standard hospital laboratory analyses of patient blood, be utilised to identify, COVID-19 patients at high risk of mortality and so enable their treatment to be optimised.
The COVID-19 pandemic has created an urgent need for robust, scalable monitoring tools supporting stratification of high-risk patients. This research aims to develop and validate prediction models, using the UK Biobank, to estimate COVID-19 mortality risk in confirmed cases. From the 11,245 participants testing positive for COVID-19, we develop a data-driven random forest classification model with excellent performance (AUC: 0.91), using baseline characteristics, pre-existing conditions, symptoms, and vital signs, such that the score could dynamically assess mortality risk with disease deterioration. We also identify several significant novel predictors of COVID-19 mortality with equivalent or greater predictive value than established high-risk comorbidities, such as detailed anthropometrics and prior acute kidney failure, urinary tract infection, and pneumonias. The model design and feature selection enables utility in outpatient settings. Possible applications include supporting individual-level risk profiling and monitoring disease progression across patients with COVID-19 at-scale, especially in hospital-at-home settings.
We analyze risk factors correlated with the initial transmission growth rate of the recent COVID-19 pandemic in different countries. The number of cases follows in its early stages an almost exponential expansion; we chose as a starting point in each country the first day $d_i$ with 30 cases and we fitted for 12 days, capturing thus the early exponential growth. We looked then for linear correlations of the exponents $alpha$ with other variables, for a sample of 126 countries. We find a positive correlation, {it i.e. faster spread of COVID-19}, with high confidence level with the following variables, with respective $p$-value: low Temperature ($4cdot10^{-7}$), high ratio of old vs.~working-age people ($3cdot10^{-6}$), life expectancy ($8cdot10^{-6}$), number of international tourists ($1cdot10^{-5}$), earlier epidemic starting date $d_i$ ($2cdot10^{-5}$), high level of physical contact in greeting habits ($6 cdot 10^{-5}$), lung cancer prevalence ($6 cdot 10^{-5}$), obesity in males ($1 cdot 10^{-4}$), share of population in urban areas ($2cdot10^{-4}$), cancer prevalence ($3 cdot 10^{-4}$), alcohol consumption ($0.0019$), daily smoking prevalence ($0.0036$), UV index ($0.004$, 73 countries). We also find a correlation with low Vitamin D levels ($0.002-0.006$, smaller sample, $sim 50$ countries, to be confirmed on a larger sample). There is highly significant correlation also with blood types: positive correlation with types RH- ($3cdot10^{-5}$) and A+ ($3cdot10^{-3}$), negative correlation with B+ ($2cdot10^{-4}$). Several of the above variables are intercorrelated and likely to have common interpretations. We performed a Principal Component Analysis, in order to find their significant independent linear combinations. We also analyzed a possible bias: countries with low GDP-per capita might have less testing and we discuss correlation with the above variables.
There have been more than 850,000 confirmed cases and over 48,000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, the re are currently no proven effective medications against COVID-19. Drug repurposing offers a promising way for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, genes, pathways, and expressions, from a large scientific corpus of 24 million PubMed publications. Using Amazon AWS computing resources, we identified 41 repurposable drugs (including indomethacin, toremifene and niclosamide) whose therapeutic association with COVID-19 were validated by transcriptomic and proteomic data in SARS-CoV-2 infected human cells and data from ongoing clinical trials. While this study, by no means recommends specific drugs, it demonstrates a powerful deep learning methodology to prioritize existing drugs for further investigation, which holds the potential of accelerating therapeutic development for COVID-19.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا