ﻻ يوجد ملخص باللغة العربية
In this work, we calculate the amplitudes of the processes $cbar c({^3P_J}) rightarrow DD,DD^*, D^*D^* rightarrow cbar c({^3P_J})$ in the leading order of the nonrelativistic expansion. The imaginary parts of the amplitudes are corresponding to the branch decay widthes of the charmonium $cbar c({^3P_J}) rightarrow DD,DD^*, D^*D^*$ and the real parts are corresponding to the mass shifts of the charmonium $cbar c({^3P_J})$ due to these decay channels. After absorbing the polynomial contributions which are pure real and include the UV divergences, the ratios between the branch decay widthes and the corresponding mass shifts are only dependent on the center-of-mass energy. We find the decay widthes and the mass shifts of the $^3P_2$ states are exact zero in the leading order. The ratios between the branch decay widthes and the mass shifts for the $^3P_0, {^3P_1}$ states are larger than 5 when the center-of-mass energy is above the $DD,DD^*, D^*D^*$ threshold. The dependence of the mass shifts on the center-of-mass energy is nontrivial especially when the center-of-mass energy is below the threshold. The analytic results can be extended to the $b$ quark sector directly.
We describe our experience porting the Regensburg implementation of the DD-$alpha$AMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knight
We explore the quantum Coulomb problem for two-body bound states, in $D=3$ and $D=3-2epsilon$ dimensions, in detail, and give an extensive list of expectation values that arise in the evaluation of QED corrections to bound state energies. We describe
In this article, we assign the newly reported state $X(3842)$ to be a D-wave $overline{c}c$ meson, and study its mass and decay constant with the QCD sum rules by considering the contributions of the vacuum condensates up to dimension-6 in the operat
Differential cross sections of $^{2}$H(d, d)d elastic scattering and proton transfer $^{2}$H(d, $^{3}$He)n reactions at 160 MeV beam energy have been obtained. They have been normalized relative to the existing cross-section data for the $^{2}$H(d, d
Using proton-proton collision data, corresponding to an integrated luminosity of 9$fb^{-1}$, collected with the~LHCb detector between 2011 and 2018, a new narrow charmonium state, the $X(3842)$ resonance, is observed in the decay modes $X(3842)righta