ﻻ يوجد ملخص باللغة العربية
The interplay of interactions and disorder in two-dimensional (2D) electron systems has actively been studied for decades. The paradigmatic approach involves starting with a clean Fermi liquid and perturbing the system with both disorder and interactions. We instead start with a clean non-Fermi liquid near a 2D ferromagnetic quantum critical point and consider the effects of disorder. In contrast with the disordered Fermi liquid, we find that our model does not suffer from runaway flows to strong coupling and the system has a marginally stable fixed point with perfect conduction.
Significant effort has been devoted to the study of non-Fermi liquid (NFL) metals: gapless conducting systems that lack a quasiparticle description. One class of NFL metals involves a finite density of fermions interacting with soft order parameter f
Non-Fermi liquid (NFL) physics can be realized in quantum dot devices where competing interactions frustrate the exact screening of dot spin or charge degrees of freedom. We show that a standard nanodevice architecture, involving a dot coupled to bot
In this paper we study the low temperature behaviors of a system of Bose-Fermi mixtures at two dimensions. Within a self-consistent ladder diagram approximation, we show that at nonzero temperatures $Trightarrow0$ the fermions exhibit non-fermi liqui
Landaus Fermi liquid theory is a cornerstone of quantum many body physics. At its heart is the adiabatic connection between the elementary excitations of an interacting fermion system and those of the same system with the interactions turned off. Rec
We develop a procedure for detecting Fermi liquid instabilities by extending the analysis of Pomeranchuk to two-dimensional lattice systems. The method is very general and straightforward to apply, thus providing a powerful tool for the search of exo