ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb interactions and effective quantum inertia of charge carriers in a macroscopic conductor

60   0   0.0 ( 0 )
 نشر من قبل Christophe Chaubet Pr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the low frequency admittance of a quantum Hall bar of size much larger than the electronic coherence length. We find that this macroscopic conductor behaves as an ideal quantum conductor with vanishing longitudinal resistance and purely inductive behavior up to f<1MHz. Using several measurement configurations, we study the dependence of this inductance on the length of the edge channel and on the integer quantum Hall filling fraction. The experimental data are well described by a scattering model for edge magnetoplasmons taking into account effective long range Coulomb interactions within the sample. This demonstrates that the inductances dependence on the filling fraction arises from the effective quantum inertia of charge carriers induced by Coulomb interactions within an ungated macroscopic quantum Hall bar.



قيم البحث

اقرأ أيضاً

Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable with the phase coherence length. Here, we report the observation of magnetoc onductance oscillations periodic in magnetic field with an amplitude of the order of $e^2/h$ in macroscopic samples of Highly Oriented Pyrolytic Graphite (HOPG). The observed effect emerges when all carriers are confined to their lowest Landau levels. We argue that this quantum interference phenomenon can be explained by invoking moire superlattices with a discrete distribution in periodicity. According to our results, when the magnetic length $ell_B$, the Fermi wave length $lambda_F$ and the length scale of fluctuations in local chemical potential are comparable in a layered conductor, quantum corrections can be detected over centimetric length scales.
Electron pairing due to a repulsive Coulomb interaction in a triple quantum dot (TQD) is experimentally studied. It is found that electron pairing in two dots of a TQD is mediated by the third dot, when the third dot strongly couples with the other t wo via Coulomb repulsion so that the TQD is in the twofold degenerate ground states of (1, 0, 0) and (0, 1, 1) charge configurations. Using the transport spectroscopy that monitors electron transport through each individual dot of a TQD, we analyze how to achieve the degeneracy in experiments, how the degeneracy is related to electron pairing, and the resulting nontrivial behavior of electron transport. Our findings may be used to design a system with nontrivial electron correlations and functionalities.
The single-band current-dipole Kubo formula for the dynamical conductivity of heavily doped graphene from Kupv{c}i{c} [Phys. Rev. B 91, 205428 (2015)] is extended to a two-band model for conduction $pi$ electrons in lightly doped graphene. Using a po steriori relaxation-time approximation in the two-band quantum transport equations, with two different relaxation rates and one quasi-particle lifetime, we explain a seemingly inconsistent dependence of the dc conductivity $sigma^{rm dc}_{alpha alpha}$ of ultraclean and dirty lightly doped graphene samples on electron doping, in a way consistent with the charge continuity equation. It is also shown that the intraband contribution to the effective number of conduction electrons in $sigma^{rm dc}_{alpha alpha}$ vanishes at $T=0$ K in the ultraclean regime, but it remains finite in the dirty regime. The present model is shown to be consistent with a picture in which the intraband and interband contributions to $sigma^{rm dc}_{alpha alpha}$ are characterized by two different mobilities of conduction electrons, the values of which are well below the widely accepted value of mobility in ultraclean graphene. The dispersions of Dirac and $pi$ plasmon resonances are reexamined to show that the present, relatively simple expression for the dynamical conductivity tensor can be used to study simultaneously single-particle excitations in the dc and optical conductivity and collective excitations in energy loss spectroscopy experiments.
87 - F. Lengers , R. Rosati , T. Kuhn 2019
When the excitation of carriers in real space is focused down to the nanometer scale, the carrier system can no longer be viewed as homogeneous and ultrafast transport of the excited carrier wave packets occurs. In state-of-the-art semiconductor stru ctures like low-dimensional heterostructures or monolayers of transition metal dichalcogenides, the Coulomb interaction between excited carriers becomes stronger due to confinement or reduced screening. This demands a fundamental understanding of strongly interacting electrons and holes and the influence of Coulomb correlations. To study the corresponding particle dynamics in a controlled way we consider a system of up to two electron-hole pairs exactly within a wave function approach. We show that the excited wave packets contain a non-trivial mixture of free particle and excitonic states. We further scrutinize the influence of Coulomb interaction on the wave packet dynamics revealing its different role for below and above band-gap excitation.
We point out a misleading treatment in a recent paper published in this Journal [J. Math. Phys. (2016) 57, 082105] concerning solutions for the two-dimensional Dirac-Weyl equation with a q-deformed pseudoscalar magnetic barrier. The authors misunders tood the full meaning of the potential and made erroneous calculations, this fact jeopardizes the main results in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا