ﻻ يوجد ملخص باللغة العربية
When the excitation of carriers in real space is focused down to the nanometer scale, the carrier system can no longer be viewed as homogeneous and ultrafast transport of the excited carrier wave packets occurs. In state-of-the-art semiconductor structures like low-dimensional heterostructures or monolayers of transition metal dichalcogenides, the Coulomb interaction between excited carriers becomes stronger due to confinement or reduced screening. This demands a fundamental understanding of strongly interacting electrons and holes and the influence of Coulomb correlations. To study the corresponding particle dynamics in a controlled way we consider a system of up to two electron-hole pairs exactly within a wave function approach. We show that the excited wave packets contain a non-trivial mixture of free particle and excitonic states. We further scrutinize the influence of Coulomb interaction on the wave packet dynamics revealing its different role for below and above band-gap excitation.
The optoelectronic properties of atomically thin transition-metal dichalcogenides are strongly correlated with the presence of defects in the materials, which are not necessarily detrimental for certain applications. For instance, defects can lead to
The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically-thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the interplay between the
Local ultrafast optical excitation of electron-hole pairs in disordered semiconductors provides the possibility to observe experimentally interaction-assisted propagation of correlated quantum particles in a disordered environment. In addition to the
We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum-well sample. Monitoring the excitonic photoluminescence, we observe transient quenching
We study the low frequency admittance of a quantum Hall bar of size much larger than the electronic coherence length. We find that this macroscopic conductor behaves as an ideal quantum conductor with vanishing longitudinal resistance and purely indu