ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous and Stimulated Electron-Photon Interactions in Nanoscale Plasmonic Near Fields

126   0   0.0 ( 0 )
 نشر من قبل Matthias Liebtrau
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate spatially-resolved measurements of spontaneous and stimulated electron-photon interactions in nanoscale optical near fields using electron energy-loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL), and photon-induced near-field electron microscopy (PINEM). Specifically, we study resonant surface plasmon modes that are tightly confined to the tip apexes of an Au nanostar, enabling a direct correlation of EELS, CL, and PINEM on the same physical structure at the nanometer length scale. Complemented by numerical electromagnetic boundary-element method calculations, we discuss the spontaneous and stimulated electron-photon interaction strength and spatial dependence of our EELS, CL and PINEM distributions. We demonstrate that in the limit of an isolated tip mode, spatial variations in the electron-near field coupling are fully determined by the modal electric field profile, irrespective of the spontaneous (in EELS and CL) or stimulated nature (in PINEM) of the process. Yet we show that coupling to the tip modes crucially depends on the incident electron energy with a maximum at a few keV, depending on the proximity of the interaction to the tip apex. Our results provide elementary insights into spontaneous and stimulated electron-light-matter interactions at the nanoscale that have key implications for research on (quantum) coherent optical phenomena in electron microscopy.

قيم البحث

اقرأ أيضاً

The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon st ates are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far-field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line-shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
We propose and theoretically analyze a new vibrational spectroscopy, termed electron- and light-induced stimulated Raman (ELISR) scattering, that combines the high spatial resolution of electron microscopy with the molecular sensitivity of surface-en hanced Raman spectroscopy. With ELISR, electron-beam excitation of plasmonic nanoparticles is utilized as a spectrally-broadband but spatially-confined Stokes beam in the presence of a diffraction-limited pump laser. To characterize this technique, we develop a numerical model and conduct full-field electromagnetic simulations to investigate two distinct nanoparticle geometries, nanorods and nanospheres, coated with a Raman-active material. Our results show the significant ($10^6$-$10^7$) stimulated Raman enhancement that is achieved with dual electron and optical excitation of these nanoparticle geometries. Importantly, the spatial resolution of this vibrational spectroscopy for electron microscopy is solely determined by the nanoparticle geometry and the plasmon mode volume. Our results highlight the promise of ELISR for simultaneous high-resolution electron microscopy with sub-diffraction-limited Raman spectroscopy, complementing advances in superresolution microscopy, correlated light and electron microscopy, and vibrational electron energy loss spectroscopy.
The inclusion of atomic inversion in Raman scattering can significantly alter field dynamics in plasmonic settings. Our calculations show that large local fields and femtosecond pulses combine to yield: (i) population inversion within hot spots; (ii) gain saturation; and (iii) conversion efficiencies characterized by a switch-like transition to the stimulated regime that spans twelve orders of magnitude. While in Raman scattering atomic inversion is usually neglected, we demonstrate that in some circumstances full accounting of the dynamics of the Bloch vector is required.
71 - Giuseppe Marino 2019
Optical nanoantennas have shown a great capacity for efficient extraction of photons from the near to the far-field, enabling directional emission from nanoscale single-photon sources. However, their potential for the generation and extraction of mul ti-photon quantum states remains unexplored. Here we demonstrate experimentally the nanoscale generation of two-photon quantum states at telecommunication wavelengths based on spontaneous parametric down-conversion in an optical nanoantenna. The antenna is a crystalline AlGaAs nanocylinder, possessing Mie-type resonances at both the pump and the bi-photon wavelengths and when excited by a pump beam generates photonpairs with a rate of 35 Hz. Normalized to the pump energy stored by the nanoantenna, this rate corresponds to 1.4 GHz/Wm, being one order of magnitude higher than conventional on-chip or bulk photon-pair sources. Our experiments open the way for multiplexing several antennas for coherent generation of multi-photon quantum states with complex spatial-mode entanglement and applications in free-space quantum communications and sensing.
We report a theoretical study of Stimulated Brillouin Scattering (SBS) in general anisotropic media, incorporating the effects of both acoustic strain and local rotation in all calculations. We apply our general theoretical framework to compute the S BS gain for layered media with periodic length scales smaller than all optical and acoustic wavelengths, where such composites behave like homogeneous anisotropic media. We theoretically predict that a layered medium comprising nanometre-thin layers of silicon and As$_2$S$_3$ glass possesses a bulk SBS gain of $1.28 times 10^{-9} , mathrm{W}^{-1} , mathrm{m}$. This is more than 500 times larger than the gain coefficient of silicon, and substantially larger than the gain of As$_2$S$_3$. The enhancement is due to a combination of roto-optic, photoelastic, and artificial photoelastic contributions in the composite structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا