ترغب بنشر مسار تعليمي؟ اضغط هنا

Reflection-asymmetric wormholes and their double shadows

122   0   0.0 ( 0 )
 نشر من قبل Maciek Wielgus
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss construction and observational properties of wormholes obtained by connecting two Reissner-Nordstrom spacetimes with distinct mass and charge parameters. These objects are spherically symmetric, but not reflection-symmetric, as the connected spacetimes differ. The reflection-asymmetric wormholes may reflect a significant fraction of the infalling radiation back to the spacetime of its origin. We interpret this effect in a simple framework of the effective photon potential. Depending on the model parameters, image of such a wormhole seen by a distant observer (its shadow) may contain a photon ring formed on the observers side, photon ring formed on the other side of the wormhole, or both photon rings. These unique topological features would allow us to firmly distinguish this class of objects from Kerr black holes using radioastronomical observations.

قيم البحث

اقرأ أيضاً

The prospect of identifying wormholes by investigating the shadows of wormholes constitute a foremost source of insight into the evolution of compact objects and it is one of the essential problems in contemporary astrophysics. The nature of the comp act objects (wormholes) plays a crucial role on shadow effect, which actually arises during the strong gravitational lensing. Current Event Horizon Telescope observations have inspired scientists to study and to construct the shadow images of the wormholes. In this work, we explore the shadow cast by a certain class of rotating wormhole. To search this, we first compose the null geodesics and study the effects of the parameters on the photon orbit. We have exposed the form and size of the wormhole shadow and have found that it is slanted as well as can be altered depending on the different parameters present in the wormhole spacetime. We also constrain the size and the spin of the wormhole using the results from M87* observation, by investigating the average diameter of the wormhole as well as deviation from circularity with respect to the wormhole throat size. In a future observation, this type of study may help to indicate the presence of a wormhole in a galactic region.
We revisit to investigate shadows cast by Kerr-like wormholes. The boundary of the shadow is determined by unstable circular photon orbits. We find that, in certain parameter regions, the orbit is located at the throat of the Kerr-like wormhole, whic h was not considered in the literature. In these cases, the existence of the throat alters the shape of the shadow significantly, and makes it possible for us to differentiate it from that of a Kerr black hole.
We consider four-dimensional wormholes immersed in bosonic matter. While their existence is based on the presence of a phantom field, many of their interesting physical properties are bestowed upon them by an ordinary complex scalar field, which carr ies only a mass term, but no self-interactions. For instance, the rotation of the scalar field induces a rotation of the throat as well. Moreover, the bosonic matter need not be symmetrically distributed in both asymptotically flat regions, leading to symmetric and asymmetric rotating wormhole spacetimes. The presence of the rotating matter also allows for wormholes with a double throat.
Wormholes are hypothetical topologically-non-trivial structures of the spacetime. From the theoretical point of view, the possibility of their existence is challenging but cannot be ruled out. This article is a compact and non-exhaustive review of pa st and current efforts to search for astrophysical wormholes in the Universe.
For dark compact objects such as black holes or wormholes, the shadow size has long been thought to be determined by the unstable photon sphere (region). However, by considering the asymmetric thin-shell wormhole (ATSW) model, we find that the impact parameter of the null geodesics is discontinuous through the wormhole in general and hence we identify novel shadows whose sizes are dependent of the photon sphere in the other side of the spacetime. The novel shadows appear in three cases: (A2) The observers spacetime contains a photon sphere and the mass parameter is smaller than that of the opposite side; (B1, B2) there s no photon sphere no matter which mass parameter is bigger. In particular, comparing with the black hole, the wormhole shadow size is always smaller and their difference is significant in most cases, which provides a potential way to observe wormholes directly through Event Horizon Telescope with better detection capability in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا