ترغب بنشر مسار تعليمي؟ اضغط هنا

Throat effects on shadows of Kerr-like wormholes

243   0   0.0 ( 0 )
 نشر من قبل Shinta Kasuya
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit to investigate shadows cast by Kerr-like wormholes. The boundary of the shadow is determined by unstable circular photon orbits. We find that, in certain parameter regions, the orbit is located at the throat of the Kerr-like wormhole, which was not considered in the literature. In these cases, the existence of the throat alters the shape of the shadow significantly, and makes it possible for us to differentiate it from that of a Kerr black hole.



قيم البحث

اقرأ أيضاً

The prospect of identifying wormholes by investigating the shadows of wormholes constitute a foremost source of insight into the evolution of compact objects and it is one of the essential problems in contemporary astrophysics. The nature of the comp act objects (wormholes) plays a crucial role on shadow effect, which actually arises during the strong gravitational lensing. Current Event Horizon Telescope observations have inspired scientists to study and to construct the shadow images of the wormholes. In this work, we explore the shadow cast by a certain class of rotating wormhole. To search this, we first compose the null geodesics and study the effects of the parameters on the photon orbit. We have exposed the form and size of the wormhole shadow and have found that it is slanted as well as can be altered depending on the different parameters present in the wormhole spacetime. We also constrain the size and the spin of the wormhole using the results from M87* observation, by investigating the average diameter of the wormhole as well as deviation from circularity with respect to the wormhole throat size. In a future observation, this type of study may help to indicate the presence of a wormhole in a galactic region.
We discuss construction and observational properties of wormholes obtained by connecting two Reissner-Nordstrom spacetimes with distinct mass and charge parameters. These objects are spherically symmetric, but not reflection-symmetric, as the connect ed spacetimes differ. The reflection-asymmetric wormholes may reflect a significant fraction of the infalling radiation back to the spacetime of its origin. We interpret this effect in a simple framework of the effective photon potential. Depending on the model parameters, image of such a wormhole seen by a distant observer (its shadow) may contain a photon ring formed on the observers side, photon ring formed on the other side of the wormhole, or both photon rings. These unique topological features would allow us to firmly distinguish this class of objects from Kerr black holes using radioastronomical observations.
In this paper, the shadows cast by non-rotating and rotating modified gravity black holes are investigated. In addition to the black hole spin parameter $a$ and the inclination angle $theta$ of observer, another parameter $alpha$ measuring the deviat ion of gravitational constant from the Newton one is also found to affect the shape of the black hole shadow. The result shows that, for fixed values of $a/M$ and $theta$, the size and perimeter of the shadows cast by the non-rotating and rotating black holes significantly increase with the parameter $alpha$, while the distortions decrease with $alpha$. Moreover, the energy emission rate of the black hole in high energy case is also investigated, and the result shows that the peak of the emission rate decreases with the parameter $alpha$.
In this work, taking the QED effect into account, we investigate the shadows of the Kerr black holes immersed in uniform magnetic fields through the numerical backward ray-tracing method. We introduce a dimensionless parameter $Lambda$ to characteriz e the strength of magnetic fields and studied the influence of magnetic fields on the Kerr black hole shadows for various spins of the black holes and inclination angles of the observers. In particular, we find that the photon hairs appear near the left edge of the shadow in the presence of magnetic fields. The photon hairs may be served as a signature of the magnetic fields. We notice that the photon hairs become more evident when the strength of magnetic fields or the spin of the black hole becomes larger. In addition, we study the deformation of the shadows by bringing in quantitative parameters that can describe the position and shape of the shadow edge.
It is now known that the shadow is not only the property of a black hole, it can also be cast by other compact objects like naked singularities. However, there exist some novel features of the shadow of the naked singularities which are elaborately d iscussed in some recent articles. In the earlier literature, it is also shown that a naked singularity may admit negative precession of bound timelike orbits which cannot be seen in Schwarzschild and Kerr black hole spacetimes. This distinguishable behavior of timelike bound orbit in the presence of the naked singularity along with the novel features of the shadow may be useful to distinguish between a black hole and a naked singularity observationally. However, in this paper, it is shown that deformed Kerr spacetime can allow negative precession of bound timelike orbits when the central singularity of that spacetime is naked. We also show that negative precession and shadow both can exist simultaneously in deformed Kerr naked singularity spacetime. Therefore, any observational evidence of negative precession of bound orbits, along with the central shadow may indicate the presence of a deformed Kerr naked singularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا