ﻻ يوجد ملخص باللغة العربية
We study streaming submodular maximization subject to matching/$b$-matching constraints (MSM/MSbM), and present improved upper and lower bounds for these problems. On the upper bounds front, we give primal-dual algorithms achieving the following approximation ratios. $bullet$ $3+2sqrt{2}approx 5.828$ for monotone MSM, improving the previous best ratio of $7.75$. $bullet$ $4+3sqrt{2}approx 7.464$ for non-monotone MSM, improving the previous best ratio of $9.899$. $bullet$ $3+epsilon$ for maximum weight b-matching, improving the previous best ratio of $4+epsilon$. On the lower bounds front, we improve on the previous best lower bound of $frac{e}{e-1}approx 1.582$ for MSM, and show ETH-based lower bounds of $approx 1.914$ for polytime monotone MSM streaming algorithms. Our most substantial contributions are our algorithmic techniques. We show that the (randomized) primal-dual method, which originated in the study of maximum weight matching (MWM), is also useful in the context of MSM. To our knowledge, this is the first use of primal-dual based analysis for streaming submodular optimization. We also show how to reinterpret previous algorithms for MSM in our framework; hence, we hope our work is a step towards unifying old and new techniques for streaming submodular maximization, and that it paves the way for further new results.
We study the problem of parameterized matching in a stream where we want to output matches between a pattern of length m and the last m symbols of the stream before the next symbol arrives. Parameterized matching is a natural generalisation of exact
In this paper we consider graph algorithms in models of computation where the space usage (random accessible storage, in addition to the read only input) is sublinear in the number of edges $m$ and the access to input data is constrained. These quest
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where
The need for real time analysis of rapidly producing data streams (e.g., video and image streams) motivated the design of streaming algorithms that can efficiently extract and summarize useful information from massive data on the fly. Such problems c
In the pattern matching with $d$ wildcards problem one is given a text $T$ of length $n$ and a pattern $P$ of length $m$ that contains $d$ wildcard characters, each denoted by a special symbol $?$. A wildcard character matches any other character. Th