ﻻ يوجد ملخص باللغة العربية
In this paper we consider graph algorithms in models of computation where the space usage (random accessible storage, in addition to the read only input) is sublinear in the number of edges $m$ and the access to input data is constrained. These questions arises in many natural settings, and in particular in the analysis of MapReduce or similar algorithms that model constrained parallelism with sublinear central processing. In SPAA 2011, Lattanzi etal. provided a $O(1)$ approximation of maximum matching using $O(p)$ rounds of iterative filtering via mapreduce and $O(n^{1+1/p})$ space of central processing for a graph with $n$ nodes and $m$ edges. We focus on weighted nonbipartite maximum matching in this paper. For any constant $p>1$, we provide an iterative sampling based algorithm for computing a $(1-epsilon)$-approximation of the weighted nonbipartite maximum matching that uses $O(p/epsilon)$ rounds of sampling, and $O(n^{1+1/p})$ space. The results extends to $b$-Matching with small changes. This paper combines adaptive sketching literature and fast primal-dual algorithms based on relaxed Dantzig-Wolfe decision procedures. Each round of sampling is implemented through linear sketches and executed in a single round of MapReduce. The paper also proves that nonstandard linear relaxations of a problem, in particular penalty based formulations, are helpful in mapreduce and similar settings in reducing the adaptive dependence of the iterations.
We study streaming submodular maximization subject to matching/$b$-matching constraints (MSM/MSbM), and present improved upper and lower bounds for these problems. On the upper bounds front, we give primal-dual algorithms achieving the following appr
This paper gives poly-logarithmic-round, distributed D-approximation algorithms for covering problems with submodular cost and monotone covering constraints (Submodular-cost Covering). The approximation ratio D is the maximum number of variables in a
The importance of an adequate inner loop starting point (as opposed to a sufficient inner loop stopping rule) is discussed in the context of a numerical optimization algorithm consisting of nested primal-dual proximal-gradient iterations. While the n
We study two variants of textsc{Maximum Cut}, which we call textsc{Connected Maximum Cut} and textsc{Maximum Minimal Cut}, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity
The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science. Despite a significant body of work dedicated to the study of this problem in the data stream