ﻻ يوجد ملخص باللغة العربية
We report a negative resistance, namely, a voltage drop along the opposite direction of a current flow, in the superconducting gap of NbSe$_2$ thin films under the irradiation of surface acoustic waves (SAWs). The amplitude of the negative resistance becomes larger by increasing the SAW power and decreasing temperature. As one possible scenario, we propose that soliton-antisoliton pairs in the charge density wave of NbSe$_2$ modulated by the SAW serve as a time-dependent capacitance in the superconducting state, leading to the dc negative resistance. The present experimental result would provide a previously unexplored way to examine nonequilibrium manipulation of the superconductivity.
We present a theoretical framework allowing to properly address the nature of surface-like eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 micron, deposi
Voltage induced magnetization dynamics of magnetic thin films is a valuable tool to study anisotropic fields, exchange couplings, magnetization damping and spin pumping mechanism. A particularly well established technique is the ferromagnetic resonan
Neutral and charged excitons (trions) in atomically-thin materials offer important capabilities for photonics, from ultrafast photodetectors to highly-efficient light-emitting diodes and lasers. Recent studies of van der Waals (vdW) heterostructures
We investigate the modulation of optical phonons in semiconductor crystal by surface acoustic wave (SAW) propagating on the crystal surface. The SAW fields induce changes on the order of 10textsuperscript{-3} in the average Raman scattering intensity
Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices in