ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized Excitons in NbSe$_2$-MoSe$_2$ Heterostructures

150   0   0.0 ( 0 )
 نشر من قبل Patrick Vora
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutral and charged excitons (trions) in atomically-thin materials offer important capabilities for photonics, from ultrafast photodetectors to highly-efficient light-emitting diodes and lasers. Recent studies of van der Waals (vdW) heterostructures comprised of dissimilar monolayer materials have uncovered a wealth of optical phenomena that are predominantly governed by interlayer interactions. Here, we examine the optical properties in NbSe$_2$ - MoSe$_2$ vdW heterostructures, which provide an important model system to study metal-semiconductor interfaces, a common element in optoelectronics. Through low-temperature photoluminescence (PL) microscopy we discover a sharp emission feature, L1, that is localized at the NbSe$_2$-capped regions of MoSe$_2$. L1 is observed at energies below the commonly-studied MoSe$_2$ excitons and trions, and exhibits temperature- and power-dependent PL consistent with exciton localization in a confining potential. Remarkably, L1 is very robust not just in different samples, but also under a variety of fabrication processes. Using first-principles calculations we reveal that the confinement potential required for exciton localization naturally arises from the in-plane band bending due to the changes in the electron affinity between pristine MoSe$_2$ and NbSe$_2$ - MoSe$_2$ heterostructure. We discuss the implications of our studies for atomically-thin optoelectronics devices with atomically-sharp interfaces and tunable electronic structures.



قيم البحث

اقرأ أيضاً

Based on emph{ab initio} theoretical calculations of the optical spectra of vertical heterostructures of MoSe$_2$ (or MoS$_2$) and WSe$_2$ sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the textsl{A} excitons of MoSe$ _2$ and WSe$_2$ with a significant binding energy on the order of 250,meV for the first excitons in the series. At the same time, we predict crystalographically aligned MoSe$_2$/WSe$_2$ heterostructures to exhibit an indirect fundamental band gap. Due to the type-II nature of the MoSe$_2$/WSe$_2$ heterostructure, the indirect transition and the exciton Rydberg series corresponding to a direct transition exhibit a distinct interlayer nature with spatial charge separation of the coupled electrons and holes. The experimentally observed long-lived states in photoluminescence spectra of MoX$_2$/WY$_2$ heterostructure are attributed to such interlayer exciton states. Our calculations further suggest an effect of stacking order on the peak energy of the interlayer excitons and their oscillation strengths.
Interlayer excitons in layered materials constitute a novel platform to study many-body phenomena arising from long-range interactions between quantum particles. The ability to localise individual interlayer excitons in potential energy traps is a ke y step towards simulating Hubbard physics in artificial lattices. Here, we demonstrate spatial localisation of long-lived interlayer excitons in a strongly confining trap array using a WS$_{2}$/WSe$_{2}$ heterostructure on a nanopatterned substrate. We detect long-lived interlayer excitons with lifetime approaching 0.2 ms and show that their confinement results in a reduced lifetime in the microsecond range and stronger emission rate with sustained optical selection rules. The combination of a permanent dipole moment, spatial confinement and long lifetime places interlayer excitons in a regime that satisfies one of the requirements for observing long-range dynamics in an optically resolvable trap lattice.
The creation of moire patterns in crystalline solids is a powerful approach to manipulate their electronic properties, which are fundamentally influenced by periodic potential landscapes. In 2D materials, a moire pattern with a superlattice potential can form by vertically stacking two layered materials with a twist and/or finite lattice constant difference. This unique approach has led to emergent electronic phenomena, including the fractal quantum Hall effect, tunable Mott insulators, and unconventional superconductivity. Furthermore, theory predicts intriguing effects on optical excitations by a moire potential in 2D valley semiconductors, but these signatures have yet to be experimentally detected. Here, we report experimental evidence of interlayer valley excitons trapped in a moire potential in MoSe$_2$/WSe$_2$ heterobilayers. At low temperatures, we observe photoluminescence near the free interlayer exciton energy but with over 100 times narrower linewidths. The emitter g-factors are homogeneous across the same sample and only take two values, -15.9 and 6.7, in samples with twisting angles near 60{deg} and 0deg, respectively. The g-factors match those of the free interlayer exciton, which is determined by one of two possible valley pairing configurations. At a twist angle near 20deg, the emitters become two orders of magnitude dimmer, but remarkably, they possess the same g-factor as the heterobilayer near 60deg. This is consistent with the Umklapp recombination of interlayer excitons near the commensurate 21.8{deg} twist angle. The emitters exhibit strong circular polarization, which implies the preservation of three-fold rotation symmetry by the trapping potential. Together with the power and excitation energy dependence, all evidence points to their origin as interlayer excitons trapped in a smooth moire potential with inherited valley-contrasting physics.
159 - Roland Gillen 2021
The optical spectra of vertically stacked MoSe$_2$/WSe$_2$ heterostructures contain additional interlayer excitonic peaks that are absent in the individual monolayer materials and exhibit a significant spatial charge separation in out-of-plane direct ion. Extending on a previous study, we used a many-body perturbation theory approach to simulate and analyse the excitonic spectra of MoSe$_2$/WSe$_2$ heterobilayers with three stacking orders, considering both momentum-direct and momentum-indirect excitons. We find that the small oscillator strengths and corresponding optical responses of the interlayer excitons are significantly stacking-dependent and give rise to high radiative lifetimes in the range of 5-200,ns (at T=4,K) for the bright interlayer excitons. Solving the finite-momentum Bethe-Salpeter Equation, we predict that the lowest-energy excitation should be an indirect exciton over the fundamental indirect band gap (K$rightarrow$Q), with a binding energy of 220,meV. However, in agreement with recent magneto-optics experiments and previous theoretical studies, our simulations of the effective excitonic Lande g-factors suggest that the low-energy momentum-indirect excitons are not experimentally observed for MoSe$_2$/WSe$_2$ heterostructures. We further reveal the existence of interlayer C excitons with significant exciton binding energies and optical oscillator strengths, which are analogous to the prominent band nesting excitons in mono- and few-layer transition-metal dichalcogenides.
Identifying quantum numbers to label elementary excitations is essential for the correct description of light-matter interaction in solids. In monolayer semiconducting transition metal dichalcogenides (TMDs) such as MoSe$_2$ or WSe$_2$, most optoelec tronic phenomena are described well by labelling electron and hole states with the spin projection along the normal to the layer (S$_z$). In contrast, for WSe$_2$/MoSe$_2$ interfaces recent experiments show that taking S$_z$ as quantum number is not a good approximation, and spin mixing needs to be always considered. Here we argue that the correct quantum number for these systems is not S$_z$, but the $z$-component of the total angular momentum -- J$_z$ = L$_z$ + S$_z$ -- associated to the C$_3$ rotational lattice symmetry, which assumes half-integer values corresponding modulo 3 to distinct states. We validate this conclusion experimentally through the observation of strong intervalley scattering mediated by chiral optical phonons that -- despite carrying angular momentum 1 -- cause resonant intervalley transitions of excitons, with an angular momentum difference of 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا