ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on axion-like particles from Mrk 421 with 4.5-years period observations by ARGO-YBJ and Fermi-LAT

52   0   0.0 ( 0 )
 نشر من قبل Hai-Jun Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we investigate the axion-like particle (ALP)-photon oscillation effect in the spectra of the blazar Markarian 421 (Mrk 421) using 4.5 years of the ARGO-YBJ and Fermi-LAT data. These data are collected during the common operation time, which cover ten activity phases of Mrk 421. No significant ALP-photon oscillation effect is confirmed. Only the observations of three phases can be individually used to set the $95%$ $rm C.L.$ constraint on the ALP parameter space. However, the constraint can be significantly improved if the analyses for the observations of ten phases are combined. We find that the Mrk 421 observations of ARGO-YBJ and Fermi-LAT have excluded the ALP parameter region with the ALP-photon coupling of $g_{agamma} gtrsim 3 times 10^{-11}$ $rm GeV^{-1}$ for the ALP mass of $sim 3times 10^{-10}$ eV $lesssim m_a lesssim 2times 10^{-8}$ eV.

قيم البحث

اقرأ أيضاً

We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, tha nks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.
ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we r eport a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-ray and gamma-ray photons longer than 1 day is found. The evolution of the spectral energy distribution is investigated by measuring spectral indices at four different flux levels. Hardening of the spectra is observed in both X-ray and gamma-ray bands. The gamma-ray flux increases quadratically with the simultaneously measured X-ray flux. All these observational results strongly favor the synchrotron self-Compton process as the underlying radiative mechanism.
The ARGO-YBJ experiment has been in stable data taking for 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm^2). With a duty-cycle greater than 86% the detector collected about 5 X 10^{11} events in a wide e nergy range, from few hundreds GeV up to the PeV. A number of open problems in cosmic ray physics has been faced exploiting different analyses. In this paper we summarize the latest results in gamma-ray astronomy and in cosmic ray physics
In this work, we re-analyze the Fermi-LAT observation of NGC 1275 to search for axion-like particle (ALP) effects and constrain ALP parameters. Instead of fitting the observed spectrum with ALP models, we adopt an alternative method for the analysis of this source which calculates the irregularity of the spectrum. With the newly used method, we find no spectral oscillation for the NGC 1275 and rule out couplings $g_{agamma}>3times10^{-12},{rm GeV^{-1}}$ around ALP mass of $m_asim$ 1 neV at 95% confidence level, which is more stringent than the previous results. We also show that the constraints can be further improved by combining the observation of PKS 2155-304. We suggest that with more sources taken into account, we could obtain a much wider exclusion region.
Axion-like particles are hypothetical new light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ax ion-like particles can modify the energy spectrum of the gamma rays. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac PKS 2155-304 are used to derive conservative upper limits on the strength of the axion-like particle coupling to photons. This study gives rise to the first exclusions on axion-like particles from gamma-ray astronomy. The derived constraints apply to both light pseudo-scalar and scalar bosons that couple to the electromagnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا