ترغب بنشر مسار تعليمي؟ اضغط هنا

4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

83   0   0.0 ( 0 )
 نشر من قبل Songzhan Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.



قيم البحث

اقرأ أيضاً

In this work, we investigate the axion-like particle (ALP)-photon oscillation effect in the spectra of the blazar Markarian 421 (Mrk 421) using 4.5 years of the ARGO-YBJ and Fermi-LAT data. These data are collected during the common operation time, w hich cover ten activity phases of Mrk 421. No significant ALP-photon oscillation effect is confirmed. Only the observations of three phases can be individually used to set the $95%$ $rm C.L.$ constraint on the ALP parameter space. However, the constraint can be significantly improved if the analyses for the observations of ten phases are combined. We find that the Mrk 421 observations of ARGO-YBJ and Fermi-LAT have excluded the ALP parameter region with the ALP-photon coupling of $g_{agamma} gtrsim 3 times 10^{-11}$ $rm GeV^{-1}$ for the ALP mass of $sim 3times 10^{-10}$ eV $lesssim m_a lesssim 2times 10^{-8}$ eV.
The blazar Mrk 421 shows frequent, short flares in the TeV energy regime. Due to the fast nature of such episodes, we often fail to obtain sufficient simultaneous information about flux variations in several energy bands. To overcome this lack of mul ti-wavelength (MWL) coverage, especially for the pre- and post-flare periods, we have set up a monitoring program with the FACT telescope (TeV energies) and the Neil Gehrels Swift Observatory (X-rays). On 2019 June 9, Mrk 421 showed a TeV outburst reaching a flux level of more than two times the flux of the Crab Nebula at TeV energies. We acquired simultaneous data in the X-rays with additional observations by XMM-Newton and INTEGRAL. For the first time, we can study a TeV blazar in outburst taking advantage of highly sensitive X-ray data from XMM-Newton and INTEGRAL combined. Our dataset is complemented by pointed radio observations by Effelsberg at GHz frequencies. We present our first results, including the {gamma}-ray and X-ray light curves, a timing analysis of the X-ray data obtained with XMM-Newton , as well as the radio spectra before, during and after the flare.
134 - V.A. Acciari , E. Aliu , T. Arlen 2011
We report on TeV gamma-ray observations of the blazar Mrk 421 (redshift of 0.031) with the VERITAS observatory and the Whipple 10m Cherenkov telescope. The excellent sensitivity of VERITAS allowed us to sample the TeV gamma-ray fluxes and energy spec tra with unprecedented accuracy where Mrk 421 was detected in each of the pointings. A total of 47.3 hrs of VERITAS and 96 hrs of Whipple 10m data were acquired between January 2006 and June 2008. We present the results of a study of the TeV gamma-ray energy spectra as a function of time, and for different flux levels. On May 2nd and 3rd, 2008, bright TeV gamma-ray flares were detected with fluxes reaching the level of 10 Crab. The TeV gamma-ray data were complemented with radio, optical, and X-ray observations, with flux variability found in all bands except for the radio waveband. The combination of the RXTE and Swift X-ray data reveal spectral hardening with increasing flux levels, often correlated with an increase of the source activity in TeV gamma-rays. Contemporaneous spectral energy distributions were generated for 18 nights, each of which are reasonably described by a one-zone SSC model.
ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we r eport a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-ray and gamma-ray photons longer than 1 day is found. The evolution of the spectral energy distribution is investigated by measuring spectral indices at four different flux levels. Hardening of the spectra is observed in both X-ray and gamma-ray bands. The gamma-ray flux increases quadratically with the simultaneously measured X-ray flux. All these observational results strongly favor the synchrotron self-Compton process as the underlying radiative mechanism.
Mrk 421 and Mrk 501 are two close, bright and well-studied high-synchrotron-peaked blazars, which feature bright and persistent GeV and TeV emission. We use the longest and densest dataset of unbiased observations of these two sources, obtained at Te V and GeV energies during five years with FACT and Fermi-LAT. To characterize the variability and derive constraints on the emission mechanism, we augment the dataset with contemporaneous multi-wavelength observations from radio to X-rays. We correlate the light curves, identify individual flares in TeV energies and X-rays, and look for inter-band connections, which are expected from the shock propagations within the jet. For Mrk 421, we find that the X-rays and TeV energies are well correlated with close to zero lag, supporting the SSC emission scenario. The timing between the TeV, X-ray flares in Mrk 421 is consistent with periods expected in the case of Lense-Thirring precession of the accretion disc. The variability of Mrk 501 on long-term periods is also consistent with SSC, with a sub-day lag between X-rays and TeV energies. Fractional variability for both blazars shows a two bump structure with the highest variability in the X-ray and TeV bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا