ﻻ يوجد ملخص باللغة العربية
Blazars are relativistic magnetized plasma outflows from supermassive black holes that point very close to our line of sight. Their emission is nonthermal dominated and highly variable across the entire electromagnetic spectrum. Relativistic magnetic reconnection has been proposed as the driver of particle acceleration during blazar flares. While recent particle-in-cell simulations have self-consistently studied the evolution of magnetic reconnection and particle acceleration therein, the resulting radiation signatures have not been systematically explored. In particular, the polarization signatures, which directly reflect the characteristic strongly dynamical magnetic field evolution during reconnection, have not been carefully investigated. In this paper, we present a systematic study of radiation and polarization signatures arising from magnetic reconnection in blazars, based on combined PIC and polarized radiation transfer simulations with various physical parameters. We identify a harder-when-brighter trend in the spectral evolution. Moreover, higher-frequency bands tend to flare earlier than lower-frequency bands in the synchrotron spectral component. Most importantly, polarization signatures appear more variable with higher frequencies. We find that the temporal polarization variations strongly depends on the guide field strength. Specifically, reconnection with significant guide field component leads to very high polarization degree that contradict to typical blazar observations, while large polarization angle rotations are unique signatures of magnetic reconnection between nearly anti-parallel magnetic field lines. These rotations are at least $90^o$ and can extend to $>180^o$, and they may rotate in both directions. These results imply that blazars that have shown large polarization angle rotations intrinsically have more nearly anti-parallel magnetic field morphology.
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-posi
We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Strong magnetic fields generated in the trailing jet shock lead to transverse deflection and acce
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic re
In an attempt to investigate the structures of ultra-relativistic jets injected into the intracluster medium (ICM) and the associated flow dynamics, such as shocks, velocity shear, and turbulence, we have developed a new special relativistic hydrodyn
We investigate the polarization properties of Comptonized X-rays from relativistic jets in Active Galactic Nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scatt