ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Polarization in Relativistic Jets

119   0   0.0 ( 0 )
 نشر من قبل Aimee McNamara
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the polarization properties of Comptonized X-rays from relativistic jets in Active Galactic Nuclei (AGN) using Monte Carlo simulations. We consider three scenarios commonly proposed for the observed X-ray emission in AGN: Compton scattering of blackbody photons emitted from an accretion disk; scattering of cosmic microwave background (CMB) photons; and self-Comptonization of intrinsically polarized synchrotron photons emitted by jet electrons. Our simulations show that for Comptonization of disk and CMB photons, the degree of polarization of the scattered photons increases with the viewing inclination angle with respect to the jet axis. In both cases the maximum linear polarization is approximately 20%. In the case of synchrotron self-Comptonization (SSC), we find that the resulting X-ray polarization depends strongly on the seed synchrotron photon injection site, with typical fractional polarizations of approximately P = 10 - 20% when synchrotron emission is localized near the jet base, while P = 20 - 70% for the case of uniform emission throughout the jet. These results indicate that X-ray polarimetry may be capable of providing unique clues to identify the location of particle acceleration sites in relativistic jets. In particular, if synchrotron photons are emitted quasi-uniformly throughout a jet, then the observed degree of X-ray polarization may be sufficiently different for each of the competing X-ray emission mechanisms (synchrotron, SSC or external Comptonization) to determine which is the dominant process. However, X-ray polarimetry alone is unlikely to be able to distinguish between disk and CMB Comptonization.



قيم البحث

اقرأ أيضاً

Powerful radio sources and quasars emit relativistic jets of plasma and magnetic fields that travel hundreds of kilo-parsecs, ultimately depositing energy into the intra- or inter-cluster medium. In the rest frame of the jet, the energy density of th e cosmic microwave background is enhanced by the bulk Lorentz factor squared, and when this exceeds the magnetic energy density the primary loss mechanism of the relativistic electrons is via inverse Compton scattering. The microwave energy density is also enhanced by a factor (1+z)^4, which becomes important at large redshifts. We are using Chandra to survey a z>3 sub-sample of radio sources selected with 21 cm wavelength flux density > 70 mJy, and with a spectroscopic redshift. Out of the first 12 objects observed, there are two clear cases of the X-rays extending beyond the detectable radio jet.
The black hole MAXI J1820+070 was discovered during its 2018 outburst and was extensively monitored across the electromagnetic spectrum. Following the detection of relativistic radio jets, we obtained four Chandra X-ray observations taken between 201 8 November and 2019 May, along with radio observations conducted with the VLA and MeerKAT arrays. We report the discovery of X-ray sources associated with the radio jets moving at relativistic velocities with a possible deceleration at late times. The broadband spectra of the jets are consistent with synchrotron radiation from particles accelerated up to very high energies (>10 TeV) by shocks produced by the jets interacting with the interstellar medium. The minimal internal energy estimated from the X-ray observations for the jets is $sim 10^{41}$ erg, significantly larger than the energy calculated from the radio flare alone, suggesting most of the energy is possibly not radiated at small scales but released through late-time interactions.
124 - M. Orienti 2015
Relativistic jets are one of the most powerful manifestations of the release of energy related to the supermassive black holes at the centre of active galactic nuclei (AGN). Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. Recent high resolution radio observations of flaring objects locate the high-energy emitting region downstream the jet at parsec scale distance from the central engine, posing questions on the nature of the seed photons upscattered to gamma-rays. Furthermore, monitoring campaigns of the most active blazars indicate that not all the high energy flares have the same characteristics in the various energy bands, even from the same source, making the interpretation of the mechanism responsible for the high-energy emission not trivial. Although the variability of the most luminous blazars is well explained by the shock-in-jet scenario, the sub-class of TeV emitting objects suggests a more complex emission model with velocity gradients in a structured jet. This contribution presents results obtained by recent multiwavelength campaigns of blazars aimed at studying the radio and gamma-ray connection and the physical mechanisms at the basis of the emission in these low and high energy bands.
We investigate the polarization of Compton scattered X-rays from relativistic jets in active galactic nuclei using Monte Carlo simulations. We consider three scenarios: scattering of photons from an accretion disk, scattering of cosmic microwave back ground (CMB) photons, and synchrotron self-Comptonization (SSC) within the jet. For Comptonization of thermal disk photons or CMB photons the maximum linear polarization attained is slightly over 20% at viewing angles close to 90 degrees. The value decreases with the viewing inclination. For SSC, the maximum value may exceed 80%. The angle dependence is complicated, and it varies with the photon injection sites. Our study demonstrates that X-ray polarization, in addition to multi-wavelength spectra, can distinguish certain models for emission and particle acceleration in relativistic jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا