ترغب بنشر مسار تعليمي؟ اضغط هنا

Fingerprints of Universal Spin-Stiffness Jump in Two-Dimensional Ferromagnets

86   0   0.0 ( 0 )
 نشر من قبل Roberto Troncoso
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent progress on synthesizing two-dimensional magnetic van der Waals systems, we propose a setup for detecting the topological Berezinskii-Kosterlitz-Thouless (BKT) phase transition in spin-transport experiments on such structures. We demonstrate that the spatial correlations of injected spin-currents into a pair of metallic leads can be used to measure the predicted universal jump of $2/pi$ in the ferromagnet spin-stiffness as well as its predicted universal square root dependence on temperature as the transition is approached from below. Our setup provides a simple route to measuring this topological phase transition in two-dimensional magnetic systems, something which up to now has proven elusive. It is hoped that this will encourage experimental efforts to investigate critical phenomena beyond the standard Ginzburg-Landau paradigm in low-dimensional magnetic systems with no local order parameter.



قيم البحث

اقرأ أيضاً

The study of atomically thin ferromagnetic crystals has led to the discovery of unusual magnetic behaviour and provided insight into the magnetic properties of bulk materials. However, the experimental techniques that have been used to explore ferrom agnetism in such materials cannot probe the magnetic field directly. Here, we show that ballistic Hall micromagnetometry can be used to measure the magnetization of individual two-dimensional ferromagnets. Our devices are made by van der Waals assembly in such a way that the investigated ferromagnetic crystal is placed on top of a multi-terminal Hall bar made from encapsulated graphene. We use the micromagnetometry technique to study atomically thin chromium tribromide (CrBr3). We find that the material remains ferromagnetic down to monolayer thickness and exhibits strong out-of-plane anisotropy. We also find that the magnetic response of CrBr3 varies little with the number of layers and its temperature dependence cannot be described by the simple Ising model of two-dimensional ferromagnetism.
We present results of a numerical analysis of magnon spectra in supercells simulating two-dimensional and bulk random diluted ferromagnets with long-ranged pair exchange interactions. We show that low-energy spectral regions for these strongly disord ered systems contain a coherent component leading to interference phenomena manifested by a pronounced sensitivity of the lowest excitation energies to the adopted boundary conditions. The dependence of configuration averages of these excitation energies on the supercell size can be used for an efficient determination of the spin-wave stiffness D. The developed formalism is applied to the ferromagnetic Mn-doped GaAs semiconductor with optional incorporation of phosphorus; the obtained concentration trends of D are found in reasonable agreement with recent experiments. Moreover, a relation of the spin stiffness to the Curie temperature Tc has been studied for Mn-doped GaAs and GaN semiconductors. It is found that the ratio Tc/D exhibits qualitatively the same dependence on Mn concentration in both systems.
Mesoscopic transport measurements reveal a large effective phase coherence length in epitaxial GaMnAs ferromagnets, contrary to usual 3d-metal ferromagnets. Universal conductance fluctuations of single nanowires are compared for epilayers with a tail ored anisotropy. At large magnetic fields, quantum interferences are due to structural disorder only, and an unusual behavior related to hole-induced ferromagnetism is evidenced, for both quantum interferences and decoherence. At small fields, phase coherence is shown to persist down to zero field, even in presence of magnons, and an additional spin disorder contribution to quantum interferences is observed under domain walls nucleation.
78 - Zhixue Shu , Tai Kong 2021
Low temperature magnetization of CrI3, CrSiTe3 and CrGeTe3 single crystals were systematically studied. Based on the temperature dependence of extrapolated spontaneous magnetization from magnetic isotherms measured at different temperatures, the spin stiffness constant (D) and spin excitation gap ($Delta$) were extracted according to Blochs law. For spin stiffness, D is estimated to be 27${pm}$6 meV $r{A}^2$, 20${pm}$3 meV $r{A}^2$ and 38${pm}$7 meV $r{A}^2$ for CrI3, CrSiTe3 and CrGeTe3 respectively. Spin excitation gaps determined via Blochs formulation have larger error bars yielding 0.59${pm}$0.34 meV (CrI3), 0.37${pm}$0.22 meV (CrSiTe3) and 0.28${pm}$0.19 meV (CrGeTe3). Among all three studied compounds, larger spin stiffness value leads to higher ferromagnetic transition temperature.
Non-coplanar spin textures with scalar spin chirality can generate effective magnetic field that deflects the motion of charge carriers, resulting in topological Hall effect (THE), a powerful probe of the ground state and low-energy excitations of co rrelated systems. However, spin chirality fluctuation in two-dimensional ferromagnets with perpendicular anisotropy has not been considered in prior studies. Herein, we report direct evidence of universal spin chirality fluctuation by probing the THE above the transition temperatures in two different ferromagnetic ultra-thin films, SrRuO$_3$ and V doped Sb$_2$Te$_3$. The temperature, magnetic field, thickness, and carrier type dependences of the THE signal, along with our Monte-Carlo simulations, unambiguously demonstrate that the spin chirality fluctuation is a universal phenomenon in two-dimensional Ising ferromagnets. Our discovery opens a new paradigm of exploring the spin chirality with topological Hall transport in two-dimensional magnets and beyond
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا