ﻻ يوجد ملخص باللغة العربية
Low temperature magnetization of CrI3, CrSiTe3 and CrGeTe3 single crystals were systematically studied. Based on the temperature dependence of extrapolated spontaneous magnetization from magnetic isotherms measured at different temperatures, the spin stiffness constant (D) and spin excitation gap ($Delta$) were extracted according to Blochs law. For spin stiffness, D is estimated to be 27${pm}$6 meV $r{A}^2$, 20${pm}$3 meV $r{A}^2$ and 38${pm}$7 meV $r{A}^2$ for CrI3, CrSiTe3 and CrGeTe3 respectively. Spin excitation gaps determined via Blochs formulation have larger error bars yielding 0.59${pm}$0.34 meV (CrI3), 0.37${pm}$0.22 meV (CrSiTe3) and 0.28${pm}$0.19 meV (CrGeTe3). Among all three studied compounds, larger spin stiffness value leads to higher ferromagnetic transition temperature.
The mechanical properties of magnetic materials are instrumental for the development of the magnetoelastic theory and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these con
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl,
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t
Low dimensional magnetism has been powerfully boosted as a promising candidate for numerous applications. The stability of the long-range magnetic order is directly dependent on the electronic structure and the relative strength of the competing magn
Two-dimensional (2D) van der Waals (vdW) materials show a range of profound physical properties that can be tailored through their incorporation in heterostructures and manipulated with external forces. The recent discovery of long-range ferromagneti