ترغب بنشر مسار تعليمي؟ اضغط هنا

Trace-based Debloat for Java Bytecode

96   0   0.0 ( 0 )
 نشر من قبل Thomas Durieux
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Software bloat is code that is packaged in an application but is actually not used and not necessary to run the application. The presence of bloat is an issue for software security, for performance, and for maintenance. In this paper, we introduce a novel technique to debloat Java bytecode through dynamic analysis, which we call trace-based debloat. We have developed JDBL, a tool that automates the collection of accurate execution traces and the debloating process. Given a Java project and a workload, JDBL generates a debloated version of the project that is syntactically correct and preserves the original behavior, modulo the workload. We evaluate JDBL by debloating 395 open-source Java libraries for a total 10M+ lines of code. Our results indicate that JDBL succeeds in debloating 62.2 % of the classes, and 20.5 % of the dependencies in the studied libraries. Meanwhile, we present the first experiment that assesses the quality of debloated libraries with respect to 1,066 clients of these libraries. We show that 957/1,001 (95.6 %) of the clients successfully compile, and 229/283 (80.9 %) clients can successfully run their test suite, after the drastic code removal among their libraries.

قيم البحث

اقرأ أيضاً

We introduce a fully automated static analysis that takes a sequential Java bytecode program P as input and attempts to prove that there exists an infinite execution of P. The technique consists in compiling P into a constraint logic program P_CLP an d in proving non-termination of P_CLP; when P consists of instructions that are exactly compiled into constraints, the non-termination of P_CLP entails that of P. Our approach can handle method calls; to the best of our knowledge, it is the first static approach for Java bytecode able to prove the existence of infinite recursions. We have implemented our technique inside the Julia analyser. We have compared the results of Julia on a set of 113 programs with those provided by AProVE and Invel, the only freely usable non-termination analysers comparable to ours that we are aware of. Only Julia could detect non-termination due to infinite recursion.
A common approach to improve software quality is to use programming guidelines to avoid common kinds of errors. In this paper, we consider the problem of enforcing guidelines for Featherweight Java (FJ). We formalize guidelines as sets of finite or i nfinite execution traces and develop a region-based type and effect system for FJ that can enforce such guidelines. We build on the work by Erbatur, Hofmann and Zu{a}linescu, who presented a type system for verifying the finite event traces of terminating FJ programs. We refine this type system, separating region typing from FJ typing, and use ideas of Hofmann and Chen to extend it to capture also infinite traces produced by non-terminating programs. Our type and effect system can express properties of both finite and infinite traces and can compute information about the possible infinite traces of FJ programs. Specifically, the set of infinite traces of a method is constructed as the greatest fixed point of the operator which calculates the possible traces of method bodies. Our type inference algorithm is realized by working with the finitary abstraction of the system based on Buchi automata.
We present an efficient and expressive tool for the instrumentation of Java programs at the bytecode-level. BISM (Bytecode-Level Instrumentation for Software Monitoring) is a light-weight Java bytecode instrumentation tool that features an expressive high-level control-flow-aware instrumentation language. The language is inspired by the aspect-oriented programming paradigm in modularizing instrumentation into separate transformers, that encapsulate joinpoint selection and advice inlining. BISM allows capturing joinpoints ranging from bytecode instructions to methods execution and provides comprehensive static and dynamic context information. It runs in two instrumentation modes: build-time and load-time. BISM also provides a mechanism to compose transformers and automatically detect their collision in the base program. Transformers in a composition can control the visibility of their advice and other instructions from the base program. We show several example applications for BISM and demonstrate its effectiveness using three experiments: a security scenario, a financial transaction system, and a general runtime verification case. The results show that BISM instrumentation incurs low runtime and memory overheads.
107 - Cyrille Artho 2017
Testing networked systems is challenging. The client or server side cannot be tested by itself. We present a solution using tool Modbat that generates test cases for Javas network library java.nio, where we test both blocking and non-blocking network functions. Our test model can dynamically simulate actions in multiple worker and client threads, thanks to a carefully orchestrated design that covers non-determinism while ensuring progress.
Program transformation has gained a wide interest since it is used for several purposes: altering semantics of a program, adding features to a program or performing optimizations. In this paper we focus on program transformations at the bytecode leve l. Because these transformations may introduce errors, our goal is to provide a formal way to verify the update and establish its correctness. The formal framework presented includes a definition of a formal semantics of updates which is the base of a static verification and a scheme based on Hoare triples and weakest precondition calculus to reason about behavioral aspects in bytecode transformation
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا