ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-based Testing of the Java Network API

108   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Cyrille Artho




اسأل ChatGPT حول البحث

Testing networked systems is challenging. The client or server side cannot be tested by itself. We present a solution using tool Modbat that generates test cases for Javas network library java.nio, where we test both blocking and non-blocking network functions. Our test model can dynamically simulate actions in multiple worker and client threads, thanks to a carefully orchestrated design that covers non-determinism while ensuring progress.



قيم البحث

اقرأ أيضاً

Software bloat is code that is packaged in an application but is actually not used and not necessary to run the application. The presence of bloat is an issue for software security, for performance, and for maintenance. In this paper, we introduce a novel technique to debloat Java bytecode through dynamic analysis, which we call trace-based debloat. We have developed JDBL, a tool that automates the collection of accurate execution traces and the debloating process. Given a Java project and a workload, JDBL generates a debloated version of the project that is syntactically correct and preserves the original behavior, modulo the workload. We evaluate JDBL by debloating 395 open-source Java libraries for a total 10M+ lines of code. Our results indicate that JDBL succeeds in debloating 62.2 % of the classes, and 20.5 % of the dependencies in the studied libraries. Meanwhile, we present the first experiment that assesses the quality of debloated libraries with respect to 1,066 clients of these libraries. We show that 957/1,001 (95.6 %) of the clients successfully compile, and 229/283 (80.9 %) clients can successfully run their test suite, after the drastic code removal among their libraries.
Context: The algorithms for generating a safe fluent API are actively studied these years. A safe fluent API is the fluent API that reports incorrect chaining of the API methods as a type error to the API users. Although such a safe property improves the productivity of its users, the construction of a safe fluent API is too complicated for the developers. The generation algorithms are studied to reduce the development cost of a safe fluent API. The study on the generation would benefit a number of programmers since a fluent API is a popular design in the real world. Inquiry: The generation of a generic fluent API has been left untackled. A generic fluent API refers to the fluent API that provides generic methods (methods that contain type parameters in their definitions). The Stream API in Java is an example of such a generic API. The recent research on the safe fluent API generation rather focuses on the grammar class that the algorithm can deal with for syntax checking. The key idea of the previous study is to use nested generics to represent a stack structure for the parser built on top of the type system. In that idea, the role of a type parameter was limited to internally representing a stack element of that parser on the type system. The library developers could not use type parameters to include a generic method in their API so that the semantic constraints for their API would be statically checked, for example, the type constraint on the items passed through a stream. Approach: We propose an algorithm to generate a generic fluent API. Our translation algorithm is modeled as the construction of deterministic finite automaton (DFA) with type parameter information. Each state of the DFA holds information about which type parameters are already bound in that state. This information is used to identify whether a method invocation in a chain newly binds a type to a type parameter, or refers to a previously bound type. The identification is required since a type parameter in a chain is bound at a particular method invocation, and that bound type is referred to in the following method invocations. Our algorithm constructs the DFA by analyzing the binding time of type parameters and their propagation among the states in a DFA that is naively constructed from the given grammar. Knowledge and Importance: Our algorithm helps library developers to develop a generic fluent API. The ability to generate a generic fluent API is essential to bring the safe fluent API generation to the real world since the use of type parameters is a common technique in the library API design. By our algorithm, the generation of a safe fluent API will be ready for practical use. Grounding: We implemented a generator named Protocool to demonstrate our algorithm. We also generated several libraries using Protocool to show the ability and the limitations of our algorithm.
This volume contains the proceedings of the Eighth Workshop on Model-Based Testing (MBT 2013), which was held on March 17, 2013 in Rome, Italy, as a satellite event of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013. T he workshop is devoted to model-based testing of both software and hardware. Model-based testing uses models describing the required behavior of the system under consideration to guide such efforts as test selection and test results evaluation. Testing validates the real system behavior against models and checks that the implementation conforms to them, but is capable also to find errors in the models themselves. The first MBT workshop was held in 2004, in Barcelona. At that time MBT already had become a hot topic, but the MBT workshop was the first event devoted mostly to this domain. Since that time the area has generated enormous scientific interest, and today there are several specialized workshops and more broad conferences on software and hardware design and quality assurance covering model based testing. MBT has become one of the most powerful system analysis tools, one of the latest cutting-edge topics related is applying MBT in security analysis and testing. MBT workshop tries to keep up with current trends.
This volume contains the proceedings of the Ninth Workshop on Model-Based Testing (MBT 2014), which was held in Grenoble, France on April 6, 2014 as a satellite workshop of the European Joint Conferences on Theory and Practice of Software (ETAPS 2014).
This paper presents a learning-based approach to detecting failures in reactive systems. The technique is based on inferring models of multiple implementations of a common specification which are pair-wise cross-checked for equivalence. Any counterex ample to equivalence is flagged as suspicious and has to be analysed manually. Hence, it is possible to find possible failures in a semi-automatic way without prior modelling. We show that the approach is effective by means of a case study. For this case study, we carried out experiments in which we learned models of five implementations of MQTT brokers/servers, a protocol used in the Internet of Things. Examining these models, we found several violations of the MQTT specification. All but one of the considered implementations showed faulty behaviour. In the analysis, we discuss effectiveness and also issues we faced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا