ﻻ يوجد ملخص باللغة العربية
Statistical postprocessing is routinely applied to correct systematic errors of numerical weather prediction models (NWP) and to automatically produce calibrated local forecasts for end-users. Postprocessing is particularly relevant in complex terrain, where even state-of-the-art high-resolution NWP systems cannot resolve many of the small-scale processes shaping local weather conditions. In addition, statistical postprocessing can also be used to combine forecasts from multiple NWP systems. Here we assess an ensemble model output statistics (EMOS) approach to produce seamless temperature forecasts based on a combination of short-term ensemble forecasts from a convection-permitting limited-area ensemble and a medium-range global ensemble forecasting model. We quantify the benefit of this approach compared to only processing the high-resolution NWP. We calibrate and combine 2-m air temperature predictions for a large set of Swiss weather stations at the hourly time-scale. The multi-model EMOS approach (Mixed EMOS) is able to improve forecasts by 30% with respect to direct model output from the high-resolution NWP. A detailed evaluation of Mixed EMOS reveals that it outperforms either single-model EMOS version by 8-12%. Valley location profit particularly from the model combination. All forecast variants perform worst in winter (DJF), however calibration and model combination improves forecast quality substantially.
Probabilistic weather forecasts from ensemble systems require statistical postprocessing to yield calibrated and sharp predictive distributions. This paper presents an area-covering postprocessing method for ensemble precipitation predictions. We rel
With their continued increase in coverage and quality, data collected from personal air quality monitors has become an increasingly valuable tool to complement existing public health monitoring system over urban areas. However, the potential of using
Statistical postprocessing techniques are nowadays key components of the forecasting suites in many National Meteorological Services (NMS), with for most of them, the objective of correcting the impact of different types of errors on the forecasts. T
We propose the SH model, a simplified version of the well-known SIR compartmental model of infectious diseases. With optimized parameters and initial conditions, this time-invariant two-parameter two-dimensional model is able to fit COVID-19 hospital
Postprocessing ensemble weather predictions to correct systematic errors has become a standard practice in research and operations. However, only few recent studies have focused on ensemble postprocessing of wind gust forecasts, despite its importanc