ترغب بنشر مسار تعليمي؟ اضغط هنا

Area-covering postprocessing of ensemble precipitation forecasts using topographical and seasonal conditions

85   0   0.0 ( 0 )
 نشر من قبل David Ginsbourger
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Probabilistic weather forecasts from ensemble systems require statistical postprocessing to yield calibrated and sharp predictive distributions. This paper presents an area-covering postprocessing method for ensemble precipitation predictions. We rely on the ensemble model output statistics (EMOS) approach, which generates probabilistic forecasts with a parametric distribution whose parameters depend on (statistics of) the ensemble prediction. A case study with daily precipitation predictions across Switzerland highlights that postprocessing at observation locations indeed improves high-resolution ensemble forecasts, with 4.5% CRPS reduction on average in the case of a lead time of 1 day. Our main aim is to achieve such an improvement without binding the model to stations, by leveraging topographical covariates. Specifically, regression coefficients are estimated by weighting the training data in relation to the topographical similarity between their station of origin and the prediction location. In our case study, this approach is found to reproduce the performance of the local model without using local historical data for calibration. We further identify that one key difficulty is that postprocessing often degrades the performance of the ensemble forecast during summer and early autumn. To mitigate, we additionally estimate on the training set whether postprocessing at a specific location is expected to improve the prediction. If not, the direct model output is used. This extension reduces the CRPS of the topographical model by up to another 1.7% on average at the price of a slight degradation in calibration. In this case, the highest improvement is achieved for a lead time of 4 days.



قيم البحث

اقرأ أيضاً

Statistical postprocessing is routinely applied to correct systematic errors of numerical weather prediction models (NWP) and to automatically produce calibrated local forecasts for end-users. Postprocessing is particularly relevant in complex terrai n, where even state-of-the-art high-resolution NWP systems cannot resolve many of the small-scale processes shaping local weather conditions. In addition, statistical postprocessing can also be used to combine forecasts from multiple NWP systems. Here we assess an ensemble model output statistics (EMOS) approach to produce seamless temperature forecasts based on a combination of short-term ensemble forecasts from a convection-permitting limited-area ensemble and a medium-range global ensemble forecasting model. We quantify the benefit of this approach compared to only processing the high-resolution NWP. We calibrate and combine 2-m air temperature predictions for a large set of Swiss weather stations at the hourly time-scale. The multi-model EMOS approach (Mixed EMOS) is able to improve forecasts by 30% with respect to direct model output from the high-resolution NWP. A detailed evaluation of Mixed EMOS reveals that it outperforms either single-model EMOS version by 8-12%. Valley location profit particularly from the model combination. All forecast variants perform worst in winter (DJF), however calibration and model combination improves forecast quality substantially.
Postprocessing ensemble weather predictions to correct systematic errors has become a standard practice in research and operations. However, only few recent studies have focused on ensemble postprocessing of wind gust forecasts, despite its importanc e for severe weather warnings. Here, we provide a comprehensive review and systematic comparison of eight statistical and machine learning methods for probabilistic wind gust forecasting via ensemble postprocessing, that can be divided in three groups: State of the art postprocessing techniques from statistics (ensemble model output statistics (EMOS), member-by-member postprocessing, isotonic distributional regression), established machine learning methods (gradient-boosting extended EMOS, quantile regression forests) and neural network-based approaches (distributional regression network, Bernstein quantile network, histogram estimation network). The methods are systematically compared using six years of data from a high-resolution, convection-permitting ensemble prediction system that was run operationally at the German weather service, and hourly observations at 175 surface weather stations in Germany. While all postprocessing methods yield calibrated forecasts and are able to correct the systematic errors of the raw ensemble predictions, incorporating information from additional meteorological predictor variables beyond wind gusts leads to significant improvements in forecast skill. In particular, we propose a flexible framework of locally adaptive neural networks with different probabilistic forecast types as output, which not only significantly outperform all benchmark postprocessing methods but also learn physically consistent relations associated with the diurnal cycle, especially the evening transition of the planetary boundary layer.
In this paper, we propose Ensemble Learning models to identify factors contributing to preterm birth. Our work leverages a rich dataset collected by a NIEHS P42 Center that is trying to identify the dominant factors responsible for the high rate of p remature births in northern Puerto Rico. We investigate analytical models addressing two major challenges present in the dataset: 1) the significant amount of incomplete data in the dataset, and 2) class imbalance in the dataset. First, we leverage and compare two types of missing data imputation methods: 1) mean-based and 2) similarity-based, increasing the completeness of this dataset. Second, we propose a feature selection and evaluation model based on using undersampling with Ensemble Learning to address class imbalance present in the dataset. We leverage and compare multiple Ensemble Feature selection methods, including Complete Linear Aggregation (CLA), Weighted Mean Aggregation (WMA), Feature Occurrence Frequency (OFA), and Classification Accuracy Based Aggregation (CAA). To further address missing data present in each feature, we propose two novel methods: 1) Missing Data Rate and Accuracy Based Aggregation (MAA), and 2) Entropy and Accuracy Based Aggregation (EAA). Both proposed models balance the degree of data variance introduced by the missing data handling during the feature selection process while maintaining model performance. Our results show a 42% improvement in sensitivity versus fallout over previous state-of-the-art methods.
Predictability estimates of ensemble prediction systems are uncertain due to limited numbers of past forecasts and observations. To account for such uncertainty, this paper proposes a Bayesian inferential framework that provides a simple 6-parameter representation of ensemble forecasting systems and the corresponding observations. The framework is probabilistic, and thus allows for quantifying uncertainty in predictability measures such as correlation skill and signal-to-noise ratios. It also provides a natural way to produce recalibrated probabilistic predictions from uncalibrated ensembles forecasts. The framework is used to address important questions concerning the skill of winter hindcasts of the North Atlantic Oscillation for 1992-2011 issued by the Met Office GloSea5 climate prediction system. Although there is much uncertainty in the correlation between ensemble mean and observations, there is strong evidence of skill: the 95% credible interval of the correlation coefficient of [0.19,0.68] does not overlap zero. There is also strong evidence that the forecasts are not exchangeable with the observations: With over 99% certainty, the signal-to-noise ratio of the forecasts is smaller than the signal-to-noise ratio of the observations, which suggests that raw forecasts should not be taken as representative scenarios of the observations. Forecast recalibration is thus required, which can be coherently addressed within the proposed framework.
86 - Augustin Touron 2018
Aiming to generate realistic synthetic times series of the bivariate process of daily mean temperature and precipitations, we introduce a non-homogeneous hidden Markov model. The non-homogeneity lies in periodic transition probabilities between the h idden states, and time-dependent emission distributions. This enables the model to account for the non-stationary behaviour of weather variables. By carefully choosing the emission distributions, it is also possible to model the dependance structure between the two variables. The model is applied to several weather stations in Europe with various climates, and we show that it is able to simulate realistic bivariate time series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا