ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Studies of 2HDMs under the Higgs Boson Precision Measurements

152   0   0.0 ( 0 )
 نشر من قبل Shuailong Li
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform comparative studies for four types of the two Higgs Doublet Models (2HDMs) under the precision measurements of the Standard Model (SM) Higgs observables at the proposed Higgs factories. We explore the discovery potential based on the hypothetical deviations in the precision data for the 2HDMs up to one-loop level. We find $5sigma$ observability from the $chi^2$ fitting in a significant theory parameter space at future Higgs factories. For the Type-I 2HDM, regions with $cos(beta-alpha)lesssim -0.1$ or $cos(beta-alpha)gtrsim 0.08$ are discoverable at more than $5sigma$ level. For the other three types of 2HDMs, the $5sigma$ region is even bigger: $|cos(beta-alpha)|gtrsim 0.02$ for $tanbetasim 1$. At small and large values of $tanbeta$, the region in $cos(beta-alpha)$ is further tightened. We examine the extent to which the different 2HDM theories may be distinguishable from one to the other at the $95%$ Confidence Level with four benchmark points as case studies. We show that a large part of the parameter space of the other types of 2HDMs can be distinguished from the benchmark points of the target model. The impacts of loop corrections are found to be significant in certain parameter regions.



قيم البحث

اقرأ أيضاً

The importance of the H -> ZZ -> 4l golden channel was shown by its major role in the discovery, by the ATLAS and CMS collaborations, of a Higgs-like boson with mass near 125 GeV. We analyze the discrimination power of the matrix element method both for separating the signal from the irreducible ZZ background and for distinguishing various spin and parity hypotheses describing a signal in this channel. We show that the proper treatment of interference effects associated with permutations of identical leptons in the four electron and four muon final states plays an important role in achieving the best sensitivity in measuring the properties of the newly discovered boson. We provide a code, MEKD, that calculates kinematic discriminants based on the full leading order matrix elements and which will aid experimentalists and phenomenologists in their continuing studies of the H -> ZZ -> 4l channel.
The data taken in Run II at the LHC have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak Higgs boson plus two-jet production, and in particular the vector-boson fusion mode (VBF). We perform a detailed comparison of precision calculations for Higgs boson production in this channel, with particular emphasis on large Higgs boson transverse momenta, and on the jet radius dependence of the cross section. We study fixed-order predictions at NLO and NNLO QCD, and compare the results to NLO plus parton shower (NLOPS) matched calculations. The impact of the NNLO corrections on the central predictions is mild, with inclusive scale uncertainties of the order of a few percent, which can increase with the imposition of kinematic cuts. We find good agreement between the fixed-order and matched calculations in non-Sudakov regions, and the various NLOPS predictions also agree well in the Sudakov regime. We analyze backgrounds to VBF Higgs boson production stemming from associated production, and from gluon-gluon fusion. At high Higgs boson transverse momenta, the $Delta y_{jj}$ and/or $m_{jj}$ cuts typically used to enhance the VBF signal over background lead to a reduced efficiency. We examine this effect as a function of the jet radius and using different definitions of the tagging jets. QCD radiative corrections increase for all Higgs production modes with increasing Higgs boson $p_T$, but the proportionately larger increase in the gluon fusion channel results in a decrease of the gluon-gluon fusion background to electroweak Higgs plus two jet production upon requiring exclusive two-jet topologies. We study this effect in detail and contrast in particular a central jet veto with a global jet multiplicity requirement.
Due to the high anticipated experimental precision at the Future Circular Collider FCC-ee (or other proposed $e^+e^-$ colliders, such as ILC, CLIC, or CEPC) for electroweak and Higgs-boson precision measurements, theoretical uncertainties may have, i f unattended, an important impact on the interpretation of these measurements within the Standard Model (SM), and thus on constraints on new physics. Current theory uncertainties, which would dominate the total uncertainty, need to be strongly reduced through future advances in the calculation of multi-loop radiative corrections together with improved experimental and theoretical control of the precision of SM input parameters. This document aims to provide an estimate of the required improvement in calculational accuracy in view of the anticipated high precision at the FCC-ee. For the most relevant electroweak and Higgs-boson precision observables we evaluate the corresponding quantitative impact.
83 - K. Desch 2003
This report summarizes the progress in the study of Higgs physics at a future linear electron positron collider at center-of-mass energies up to about 1000 GeV and high luminosity. After the publication of the TESLA Technical Design Report, an extend ed ECFA/DESY study on linear collider physics and detectors was performed. The paper summarizes the status of the studies with main emphasis on recent results obtained in the course of the workshop.
132 - J. de Blas 2019
This document aims to provide an assessment of the potential of future colliding beam facilities to perform Higgs boson studies. The analysis builds on the submissions made by the proponents of future colliders to the European Strategy Update process , and takes as its point of departure the results expected at the completion of the HL-LHC program. This report presents quantitative results on many aspects of Higgs physics for future collider projects of sufficient maturity using uniform methodologies. A first version of this report was prepared for the purposes of discussion at the Open Symposium in Granada (13-16/05/2019). Comments and feedback received led to the consideration of additional run scenarios as well as a refined analysis of the impact of electroweak measurements on the Higgs coupling extraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا