ﻻ يوجد ملخص باللغة العربية
Theories of quantum gravity based on the holographic principle predict the existence of quantum fluctuations of distance measurements that accumulate and exhibit correlations over macroscopic distances. This paper models an expected signal due to this phenomenology, and details the design and estimated sensitivity of co-located twin table-top 3D interferometers being built to measure or constrain it. The experiment is estimated to be sensitive to displacements $sim10^{-19},rm{m}/sqrt{rm{Hz}}$ in a frequency band between 1 and 250 MHz, surpassing previous experiments and enabling the possible observation of quantum gravity phenomena. The experiment will also be sensitive to MHz gravitational waves and various dark matter candidates.
With the use of twin, co-located, 3D interferometers, Cardiff Universitys Gravity Exploration Institute aims to observe quantum fluctuations of space-time as predicted by some theories of quantum gravity. Our design displacement sensitivity exceeds t
We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/
Current limits on violation of local Lorentz invariance in the photon sector are derived mainly from experiments that search for a spatial anisotropy in the speed of light. The presently operating gravitational wave detectors are Michelson interferom
Isolated spinning neutron stars, asymmetric with respect to their rotation axis, are expected to be sources of continuous gravitational waves. The most sensitive searches for these sources are based on accurate matched filtering techniques, that assu
NEID is a high-resolution optical spectrograph on the WIYN 3.5-m telescope at Kitt Peak National Observatory and will soon join the new generation of extreme precision radial velocity instruments in operation around the world. We plan to use the inst