ﻻ يوجد ملخص باللغة العربية
NEID is a high-resolution optical spectrograph on the WIYN 3.5-m telescope at Kitt Peak National Observatory and will soon join the new generation of extreme precision radial velocity instruments in operation around the world. We plan to use the instrument to conduct the NEID Earth Twin Survey (NETS) over the course of the next 5 years, collecting hundreds of observations of some of the nearest and brightest stars in an effort to probe the regime of Earth-mass exoplanets. Even if we take advantage of the extreme instrumental precision conferred by NEID, it will remain difficult to disentangle the weak (~10 cm s$^{-1}$) signals induced by such low-mass, long-period exoplanets from stellar noise for all but the quietest host stars. In this work, we present a set of quantitative selection metrics which we use to identify an initial NETS target list consisting of stars conducive to the detection of exoplanets in the regime of interest. We also outline a set of observing strategies with which we aim to mitigate uncertainty contributions from intrinsic stellar variability and other sources of noise.
Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield
Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from $sim$5 to 300 AU. A careful assessment of the stellar properties is crucial for a pro
In the next decades, the astrobiological community will debate whether the first observations of oxygen in an exoplanet$$s atmosphere signifies life, so it is critical to establish procedures now for collection and interpretation of such data. We pre
The detections of small, rocky exoplanets have surged in recent years and will likely continue to do so. To know whether a rocky exoplanet is habitable, we have to characterise its atmosphere and surface. A promising characterisation method for rocky
Upcoming NASA astrophysics missions such as the James Webb Space Telescope will search for signs of life on planets transiting nearby stars. Doing so will require co-adding dozens of transmission spectra to build up sufficient signal to noise while s