ترغب بنشر مسار تعليمي؟ اضغط هنا

Target Prioritization and Observing Strategies for the NEID Earth Twin Survey

120   0   0.0 ( 0 )
 نشر من قبل Arvind Gupta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NEID is a high-resolution optical spectrograph on the WIYN 3.5-m telescope at Kitt Peak National Observatory and will soon join the new generation of extreme precision radial velocity instruments in operation around the world. We plan to use the instrument to conduct the NEID Earth Twin Survey (NETS) over the course of the next 5 years, collecting hundreds of observations of some of the nearest and brightest stars in an effort to probe the regime of Earth-mass exoplanets. Even if we take advantage of the extreme instrumental precision conferred by NEID, it will remain difficult to disentangle the weak (~10 cm s$^{-1}$) signals induced by such low-mass, long-period exoplanets from stellar noise for all but the quietest host stars. In this work, we present a set of quantitative selection metrics which we use to identify an initial NETS target list consisting of stars conducive to the detection of exoplanets in the regime of interest. We also outline a set of observing strategies with which we aim to mitigate uncertainty contributions from intrinsic stellar variability and other sources of noise.

قيم البحث

اقرأ أيضاً

Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully-automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re), 11 systems with multiple transiting candidates, 6 sub-day period planets and 3 planets that are in or near the habitable zone of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available (at https://github.com/ashleychontos/sort-a-survey) and can be adapted for any survey which requires a balance of multiple science interests within a given telescope allocation.
Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from $sim$5 to 300 AU. A careful assessment of the stellar properties is crucial for a pro per understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample were revisited, including for instance measurements from the GAIA Data Release 2.
In the next decades, the astrobiological community will debate whether the first observations of oxygen in an exoplanet$$s atmosphere signifies life, so it is critical to establish procedures now for collection and interpretation of such data. We pre sent a step-by-step observational strategy for using oxygen as a robust biosignature, to prioritize exoplanet targets and design future observations. It is premised on avoiding planets lacking subaerial weathering of continents, which would imply geochemical cycles drastically different from Earth$$s, precluding use of oxygen as a biosignature. The strategy starts with the most readily obtained data: semi-major axis and stellar luminosity to ensure residence in the habitable zone; stellar XUV flux, to ensure an exoplanet can retain a secondary (outgassed) atmosphere. Next, high-precision mass and radius information should be combined with high-precision stellar abundance data, to constrain the exoplanet$$s water content; those incompatible with less than 0.1 wt % H$_{2}$O can be deprioritized. Then, reflectance photometry or low-resolution transmission spectroscopy should confirm an optically thin atmosphere. Subsequent long-duration, high-resolution transmission spectroscopy should search for oxygen and ensure that water vapor and CO$_{2}$ are present only at low (10$^{2}$-10$^{4}$ ppm levels). Assuming oxygen is found, attribution to life requires the difficult acquisition of a detailed, multispectral light curve of the exoplanet to ensure both surface land and water. Exoplanets failing some of these steps might be habitable, even have observable biogenic oxygen, but should be deprioritized because oxygen could not be attributed unambiguously to life. We show how this is the case for the Solar System, the 55 Cnc System, and the TRAPPIST-1 System, in which only the Earth and TRAPPIST-1e successfully pass through our procedure.
74 - T. Karalidi , D.M. Stam , F. Snik 2012
The detections of small, rocky exoplanets have surged in recent years and will likely continue to do so. To know whether a rocky exoplanet is habitable, we have to characterise its atmosphere and surface. A promising characterisation method for rocky exoplanets is direct detection using spectropolarimetry. This method will be based on single pixel signals, because spatially resolving exoplanets is impossible with current and near-future instruments. Well-tested retrieval algorithms are essential to interpret these single pixel signals in terms of atmospheric composition, cloud and surface coverage. Observations of Earth itself provide the obvious benchmark data for testing such algorithms. The observations should provide signals that are integrated over the Earths disk, that capture day and night variations, and all phase angles. The Moon is a unique platform from where the Earth can be observed as an exoplanet, undisturbed, all of the time. Here, we present LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth, a small and robust spectropolarimeter to observe our Earth as an exoplanet.
Upcoming NASA astrophysics missions such as the James Webb Space Telescope will search for signs of life on planets transiting nearby stars. Doing so will require co-adding dozens of transmission spectra to build up sufficient signal to noise while s imultaneously accounting for challenging systematic effects such as surface/weather variability, atmospheric refraction, and stellar activity. To determine the magnitude and impacts of both stellar and planet variability on measured transmission spectra, we must assess the feasibility of stacking multiple transmission spectra of exo-Earths around their host stars. Using our own solar system, we can determine if current methodologies are sufficient to detect signs of life in Earths atmosphere and measure the abundance of habitability indicators, such as H2O and CO2, and biosignature pairs, such as O2 and CH4. We assess the impact on transmission spectra of Earth transiting across the Sun from solar and planetary variability and identify remaining unknowns for understanding exoplanet transmission spectra. We conclude that a satellite observing Earth transits across the Sun from beyond L2 is necessary to address these long-standing concerns about the reliability of co-adding planet spectra at UV, optical, and infrared wavelengths from multiple transits in the face of relatively large astrophysical systematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا