ترغب بنشر مسار تعليمي؟ اضغط هنا

Sklyanin-like algebras for ($q$-)linear grids and ($q$-)para-Krawtchouk polynomials

96   0   0.0 ( 0 )
 نشر من قبل Julien Gaboriaud
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

S-Heun operators on linear and $q$-linear grids are introduced. These operators are special cases of Heun operators and are related to Sklyanin-like algebras. The Continuous Hahn and Big $q$-Jacobi polynomials are functions on which these S-Heun operators have natural actions. We show that the S-Heun operators encompass both the bispectral operators and Kalnins and Millers structure operators. These four structure operators realize special limit cases of the trigonometric degeneration of the original Sklyanin algebra. Finite-dimensional representations of these algebras are obtained from a truncation condition. The corresponding representation bases are finite families of polynomials: the para-Krawtchouk and $q$-para-Krawtchouk ones. A natural algebraic interpretation of these polynomials that had been missing is thus obtained. We also recover the Heun operators attached to the corresponding bispectral problems as quadratic combinations of the S-Heun operators

قيم البحث

اقرأ أيضاً

The matrix elements of unitary $SU_q(3)$ corepresentations, which are analogues of the symmetric powers of the natural repesentation, are shown to be the bivariate $q$-Krawtchouk orthogonal polynomials, thus providing an algebraic interpretation of these polynomials in terms of quantum groups.
The relation between Wilson and para-Racah polynomials and representations of the degenerate rational Sklyanin algebra is established. Second order Heun operators on quadratic grids with no diagonal terms are determined. These special or S-Heun opera tors lead to the rational degeneration of the Sklyanin algebra; they also entail the contiguity and structure operators of the Wilson polynomials. The finite-dimensional restriction yields a representation that acts on the para-Racah polynomials.
90 - M. Jimbo , H. Nagoya , H. Sakai 2017
Iorgov, Lisovyy, and Teschner established a connection between isomonodromic deformation of linear differential equations and Liouville conformal field theory at $c=1$. In this paper we present a $q$ analog of their construction. We show that the gen eral solution of the $q$-Painleve VI equation is a ratio of four tau functions, each of which is given by a combinatorial series arising in the AGT correspondence. We also propose conjectural bilinear equations for the tau functions.
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for the expansion of a polynomial in terms of m-polynomials. We conclude this article by an implementation in MATHEMATICA of m-polynomials and the results obtained for them.
We describe coherent states and associated generalized Grassmann variables for a system of $m$ independent $q$-boson modes. A resolution of unity in terms of generalized Berezin integrals leads to generalized Grassmann symbolic calculus. Formulae for operator traces are given and the thermodynamic partition function for a system of $q$-boson oscillators is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا