ترغب بنشر مسار تعليمي؟ اضغط هنا

The rational Sklyanin algebra and the Wilson and para-Racah polynomials

65   0   0.0 ( 0 )
 نشر من قبل Geoffroy Bergeron
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relation between Wilson and para-Racah polynomials and representations of the degenerate rational Sklyanin algebra is established. Second order Heun operators on quadratic grids with no diagonal terms are determined. These special or S-Heun operators lead to the rational degeneration of the Sklyanin algebra; they also entail the contiguity and structure operators of the Wilson polynomials. The finite-dimensional restriction yields a representation that acts on the para-Racah polynomials.

قيم البحث

اقرأ أيضاً

S-Heun operators on linear and $q$-linear grids are introduced. These operators are special cases of Heun operators and are related to Sklyanin-like algebras. The Continuous Hahn and Big $q$-Jacobi polynomials are functions on which these S-Heun oper ators have natural actions. We show that the S-Heun operators encompass both the bispectral operators and Kalnins and Millers structure operators. These four structure operators realize special limit cases of the trigonometric degeneration of the original Sklyanin algebra. Finite-dimensional representations of these algebras are obtained from a truncation condition. The corresponding representation bases are finite families of polynomials: the para-Krawtchouk and $q$-para-Krawtchouk ones. A natural algebraic interpretation of these polynomials that had been missing is thus obtained. We also recover the Heun operators attached to the corresponding bispectral problems as quadratic combinations of the S-Heun operators
100 - Luc Vinet , Alexei Zhedanov 2020
An algebra denoted $mmathfrak{H}$ with three generators is introduced and shown to admit embeddings of the Hahn algebra and the rational Hahn algebra. It has a real version of the deformed Jordan plane as a subalgebra whose connection with Hahn polyn omials is established. Representation bases corresponding to eigenvalue or generalized eigenvalue problems involving the generators are considered. Overlaps between these bases are shown to be bispectral orthogonal polynomials or biorthogonal rational functions thereby providing a unified description of these functions based on $mmathfrak{H}$. Models in terms of differential and difference operators are used to identify explicitly the underlying special functions as Hahn polynomials and rational functions and to determine their characterizations. An embedding of $mmathfrak{H}$ in $mathcal{U}(mathfrak{sl}_2)$ is presented. A Pade approximation table for the binomial function is obtained as a by-product.
Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n$ by $n$ determinant $det((a+j-i)Gamma(b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $Pf((j-i)Gamma(b+j+i))$ with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter Pfaffian formula with a $q$-analogue by replacing the Gamma function by the moment sequence of the little $q$-Jacobi polynomials. On the other hand, Nishizawa has found a $q$-analogue of the Mehta--Wang formula. Our purpose is to generalize both the Mehta-Wang and Nishizawa formulae by using the moment sequence of the little $q$-Jacobi polynomials. It turns out that the corresponding determinant can be evaluated explicitly in terms of the Askey-Wilson polynomials.
Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presen tation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.
We study solutions of the Bethe ansatz equations of the non-homogeneous periodic XXX model associated to super Yangian $mathrm Y(mathfrak{gl}_{m|n})$. To a solution we associate a rational difference operator $mathcal D$ and a superspace of rational functions $W$. We show that the set of complete factorizations of $mathcal D$ is in canonical bijection with the variety of superflags in $W$ and that each generic superflag defines a solution of the Bethe ansatz equation. We also give the analogous statements for the quasi-periodic supersymmetric spin chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا