ﻻ يوجد ملخص باللغة العربية
Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes $44.5%$ of total execution time of a nanopore sequencing pipeline. However, it is difficult to quantize a base-caller and build a power-efficient processing-in-memory (PIM) to run the quantized base-caller. In this paper, we propose a novel algorithm/architecture co-designed PIM, Helix, to power-efficiently and accurately accelerate nanopore base-calling. From algorithm perspective, we present systematic error aware training to minimize the number of systematic errors in a quantized base-caller. From architecture perspective, we propose a low-power SOT-MRAM-based ADC array to process analog-to-digital conversion operations and improve power efficiency of prior DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to accelerate CTC decoding operations, and create a SOT-MRAM binary comparator array to process read voting. Compared to state-of-the-art PIMs, Helix improves base-calling throughput by $6times$, throughput per Watt by $11.9times$ and per $mm^2$ by $7.5times$ without degrading base-calling accuracy.
Basic Linear Algebra Subprograms (BLAS) play key role in high performance and scientific computing applications. Experimentally, yesteryear multicore and General Purpose Graphics Processing Units (GPGPUs) are capable of achieving up to 15 to 57% of t
We developed a new base caller DeepNano-coral for nanopore sequencing, which is optimized to run on the Coral Edge Tensor Processing Unit, a small USB-attached hardware accelerator. To achieve this goal, we have designed ne
In nanopore sequencing, electrical signal is measured as DNA molecules pass through the sequencing pores. Translating these signals into DNA bases (base calling) is a highly non-trivial task, and its quality has a large impact on the sequencing accur
Motivation: The MinION device by Oxford Nanopore is the first portable sequencing device. MinION is able to produce very long reads (reads over 100~kBp were reported), however it suffers from high sequencing error rate. In this paper, we show that th
The number of parameters in deep neural networks (DNNs) is scaling at about 5$times$ the rate of Moores Law. To sustain the pace of growth of the DNNs, new technologies and computing architectures are needed. Photonic computing systems are promising