ترغب بنشر مسار تعليمي؟ اضغط هنا

Direction-Controlled Chemical Doping for Reversible G-Phonon Mixing in ABC Trilayer Graphene

62   0   0.0 ( 0 )
 نشر من قبل Sunmin Ryu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Not only the apparent atomic arrangement but the charge distribution also defines the crystalline symmetry that dictates the electronic and vibrational structures. In this work, we report reversible and direction-controlled chemical doping that modifies the inversion symmetry of AB-bilayer and ABCtrilayer graphene. For the top-down and bottom-up hole injection into graphene sheets, we employed molecular adsorption of electronegative I2 and annealing-induced interfacial hole doping, respectively. The chemical breakdown of the inversion symmetry led to the mixing of the G phonons, Raman active Eg and Raman-inactive Eu modes, which was manifested as the two split G peaks, G- and G+. The broken inversion symmetry could be recovered by removing the hole dopants by simple rinsing or interfacial molecular replacement. Alternatively, the symmetry could be regained by double-side charge injection, which eliminated G- and formed an additional peak, Go, originating from the barely doped interior layer. Chemical modification of crystalline symmetry as demonstrated in the current study can be applied to other low dimensional crystals in tuning their various material properties.



قيم البحث

اقرأ أيضاً

ABC-stacked trilayer graphenes chiral band structure results in three ($n=0,1,2$) Landau level orbitals with zero kinetic energy. This unique feature has important consequences on the interaction driven states of the 12-fold degenerate (including spi n and valley) N=0 Landau level. In particular, at many filling factors $ u_{T} =pm5,pm4,pm2,pm1$ a quantum phase transition from a quantum Hall liquid state to a triangular charge density wave occurs as a function of the single-particle induced LL orbital splitting $Delta_{LL}$. This phase transition should be characterized by a re-entrant integer quantum Hall effect with the Hall conductivity corresponding to the {it adjacent} interaction driven integer quantum Hall plateau.
We present a comparative measurement of the G-peak oscillations of phonon frequency, Raman intensity and linewidth in the Magneto-Raman scattering of optical E2g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behaviour between the electronic excitations and the E2g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few layers graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.
Few layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectr oscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene. From a systematic study of the non-linearities in current textit{versus} voltage characteristics and the temperature dependence of the conductivity we demonstrate that thermally activated transport over the energy-gap dominates the electrical response of these transistors. The estimated values for energy gap from the temperature dependence and from the current voltage characteristics follow the theoretically expected electric field dependence with critical exponent $3/2$. These experiments indicate that high quality few-layer graphene are suitable candidates for exploring novel tunable THz light sources and detectors.
The layer-based random-phase approximation is further developed to investigate electronic excitations in tri-layer ABC-stacked graphene. All the layer-dependent atomic interactions and Coulomb interactions are included in the dynamic charge screening . There exist rich and unique (momentum, frequency)-excitation phase diagrams, in which the complex single-particle excitations and five kinds of plasmon modes, are dominated by the unusual energy bands and doping carrier densities. The latter frequently experience the significant Landau damping due to the former, leading to the coexistence/destruction in the energy loss spectra. Specifically, the dispersion of the only acoustic plasmon in pristine case is dramatically changed from linear into quadratic even at very low doping.
We investigate polyethylene imine and diazonium salts as stable, complementary dopants on graphene. Transport in graphene devices doped with these molecules exhibits asymmetry in electron and hole conductance. The conductance of one carrier is preser ved, while the conductance of the other carrier decreases. Simulations based on nonequilibrium Greens function formalism suggest that the origin of this asymmetry is imbalanced carrier injection from the graphene electrodes caused by misalignment of the electrode and channel neutrality points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا