ﻻ يوجد ملخص باللغة العربية
We present a comparative measurement of the G-peak oscillations of phonon frequency, Raman intensity and linewidth in the Magneto-Raman scattering of optical E2g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behaviour between the electronic excitations and the E2g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few layers graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.
The layer-based random-phase approximation is further developed to investigate electronic excitations in tri-layer ABC-stacked graphene. All the layer-dependent atomic interactions and Coulomb interactions are included in the dynamic charge screening
Using infrared spectroscopy, we investigate bottom gated ABA-stacked trilayer graphene subject to an additional environment-induced p-type doping. We find that the Slonczewski-Weiss-McClure tight-binding model and the Kubo formula reproduce the gate
The band structure and the optical conductivity of an ABA (Bernal-type) stacked graphene trilayer are calculated. It is shown that, under appropriate doping, a strong resonant peak develops in the optical conductivity, located at the frequency corres
The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configurati
For the first time, we have observed the obvious triple G peak splitting of ABA stacked trilayer graphene. The G peak splitting can be quantatively understood through the different electron-phonon coupling strength of Ea, Eb and Ea modes. In addition