ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative Adversarial Networks for Synthesizing InSAR Patches

98   0   0.0 ( 0 )
 نشر من قبل Philipp Sibler
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative Adversarial Networks (GANs) have been employed with certain success for image translation tasks between optical and real-valued SAR intensity imagery. Applications include aiding interpretability of SAR scenes with their optical counterparts by artificial patch generation and automatic SAR-optical scene matching. The synthesis of artificial complex-valued InSAR image stacks asks for, besides good perceptual quality, more stringent quality metrics like phase noise and phase coherence. This paper provides a signal processing model of generative CNN structures, describes effects influencing those quality metrics and presents a mapping scheme of complex-valued data to given CNN structures based on popular Deep Learning frameworks.

قيم البحث

اقرأ أيضاً

Recent improvements in generative adversarial visual synthesis incorporate real and fake image transformation in a self-supervised setting, leading to increased stability and perceptual fidelity. However, these approaches typically involve image augm entations via additional regularizers in the GAN objective and thus spend valuable network capacity towards approximating transformation equivariance instead of their desired task. In this work, we explicitly incorporate inductive symmetry priors into the network architectures via group-equivariant convolutional networks. Group-convolutions have higher expressive power with fewer samples and lead to better gradient feedback between generator and discriminator. We show that group-equivariance integrates seamlessly with recent techniques for GAN training across regularizers, architectures, and loss functions. We demonstrate the utility of our methods for conditional synthesis by improving generation in the limited data regime across symmetric imaging datasets and even find benefits for natural images with preferred orientation.
Recent work introduced progressive network growing as a promising way to ease the training for large GANs, but the model design and architecture-growing strategy still remain under-explored and needs manual design for different image data. In this pa per, we propose a method to dynamically grow a GAN during training, optimizing the network architecture and its parameters together with automation. The method embeds architecture search techniques as an interleaving step with gradient-based training to periodically seek the optimal architecture-growing strategy for the generator and discriminator. It enjoys the benefits of both eased training because of progressive growing and improved performance because of broader architecture design space. Experimental results demonstrate new state-of-the-art of image generation. Observations in the search procedure also provide constructive insights into the GAN model design such as generator-discriminator balance and convolutional layer choices.
Neural architecture search (NAS) has witnessed prevailing success in image classification and (very recently) segmentation tasks. In this paper, we present the first preliminary study on introducing the NAS algorithm to generative adversarial network s (GANs), dubbed AutoGAN. The marriage of NAS and GANs faces its unique challenges. We define the search space for the generator architectural variations and use an RNN controller to guide the search, with parameter sharing and dynamic-resetting to accelerate the process. Inception score is adopted as the reward, and a multi-level search strategy is introduced to perform NAS in a progressive way. Experiments validate the effectiveness of AutoGAN on the task of unconditional image generation. Specifically, our discovered architectures achieve highly competitive performance compared to current state-of-the-art hand-crafted GANs, e.g., setting new state-of-the-art FID scores of 12.42 on CIFAR-10, and 31.01 on STL-10, respectively. We also conclude with a discussion of the current limitations and future potential of AutoGAN. The code is available at https://github.com/TAMU-VITA/AutoGAN
Generative Adversarial Networks (GANs) have demonstrated unprecedented success in various image generation tasks. The encouraging results, however, come at the price of a cumbersome training process, during which the generator and discriminator are a lternately updated in two stages. In this paper, we investigate a general training scheme that enables training GANs efficiently in only one stage. Based on the adversarial losses of the generator and discriminator, we categorize GANs into two classes, Symmetric GANs and Asymmetric GANs, and introduce a novel gradient decomposition method to unify the two, allowing us to train both classes in one stage and hence alleviate the training effort. We also computationally analyze the efficiency of the proposed method, and empirically demonstrate that, the proposed method yields a solid $1.5times$ acceleration across various datasets and network architectures. Furthermore, we show that the proposed method is readily applicable to other adversarial-training scenarios, such as data-free knowledge distillation. The code is available at https://github.com/zju-vipa/OSGAN.
Generative Adversarial Networks (GANs) currently achieve the state-of-the-art sound synthesis quality for pitched musical instruments using a 2-channel spectrogram representation consisting of log magnitude and instantaneous frequency (the IFSpectrog ram). Many other synthesis systems use representations derived from the magnitude spectra, and then depend on a backend component to invert the output magnitude spectrograms that generally result in audible artefacts associated with the inversion process. However, for signals that have closely-spaced frequency components such as non-pitched and other noisy sounds, training the GAN on the 2-channel IFSpectrogram representation offers no advantage over the magnitude spectra based representations. In this paper, we propose that training GANs on single-channel magnitude spectra, and using the Phase Gradient Heap Integration (PGHI) inversion algorithm is a better comprehensive approach for audio synthesis modeling of diverse signals that include pitched, non-pitched, and dynamically complex sounds. We show that this method produces higher-quality output for wideband and noisy sounds, such as pops and chirps, compared to using the IFSpectrogram. Furthermore, the sound quality for pitched sounds is comparable to using the IFSpectrogram, even while using a simpler representation with half the memory requirements.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا