ﻻ يوجد ملخص باللغة العربية
Biological invasion, whereby populations of motile and proliferative individuals lead to moving fronts that invade into vacant regions, are routinely studied using partial differential equation (PDE) models based upon the classical Fisher--KPP model. While the Fisher--KPP model and extensions have been successfully used to model a range of invasive phenomena, including ecological and cellular invasion, an often--overlooked limitation of the Fisher--KPP model is that it cannot be used to model biological recession where the spatial extent of the population decreases with time. In this work we study the textit{Fisher--Stefan} model, which is a generalisation of the Fisher--KPP model obtained by reformulating the Fisher--KPP model as a moving boundary problem. The nondimensional Fisher--Stefan model involves just one single parameter, $kappa$, which relates the shape of the density front at the moving boundary to the speed of the associated travelling wave, $c$. Using numerical simulation, phase plane and perturbation analysis, we construct approximate solutions of the Fisher--Stefan model for both slowly invading and slowly receding travelling waves, as well as for rapidly receding travelling waves. These approximations allow us to determine the relationship between $c$ and $kappa$ so that commonly--reported experimental estimates of $c$ can be used to provide estimates of the unknown parameter $kappa$. Interestingly, when we reinterpret the Fisher--KPP model as a moving boundary problem, many disregarded features of the classical Fisher--KPP phase plane take on a new interpretation since travelling waves solutions with $c < 2$ are not normally considered. This means that our analysis of the Fisher--Stefan model has both practical value and an inherent mathematical value.
Reaction-diffusion equations (RDEs) are often derived as continuum limits of lattice-based discrete models. Recently, a discrete model which allows the rates of movement, proliferation and death to depend upon whether the agents are isolated has been
Single-species reaction-diffusion equations, such as the Fisher-KPP and Porous-Fisher equations, support travelling wave solutions that are often interpreted as simple mathematical models of biological invasion. Such travelling wave solutions are tho
In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, PLoS Comp.
Here, we investigated the influence of physicochemical characteristics of chondroitin sulfate (CS) on its in vitro absorption and anti-inflammatory activity. We used eight different synthetic and natural CS samples with a range of molecular weights (
Several biological tissues undergo changes in their geometry and in their bulk material properties by modelling and remodelling processes. Modelling synthesises tissue in some regions and removes tissue in others. Remodelling overwrites old tissue ma