ﻻ يوجد ملخص باللغة العربية
Reaction-diffusion equations (RDEs) are often derived as continuum limits of lattice-based discrete models. Recently, a discrete model which allows the rates of movement, proliferation and death to depend upon whether the agents are isolated has been proposed, and this approach gives various RDEs where the diffusion term is convex and can become negative (Johnston et al., Sci. Rep. 7, 2017), i.e. forward-backward-forward diffusion. Numerical simulations suggest these RDEs support shock-fronted travelling waves when the reaction term includes an Allee effect. In this work we formalise these preliminary numerical observations by analysing the shock-fronted travelling waves through embedding the RDE into a larger class of higher order partial differential equations (PDEs). Subsequently, we use geometric singular perturbation theory to study this larger class of equations and prove the existence of these shock-fronted travelling waves. Most notable, we show that different embeddings yield shock-fronted travelling waves with different properties.
We use a geometric approach to prove the existence of smooth travelling wave solutions of a nonlinear diffusion-reaction equation with logistic kinetics and a convex nonlinear diffusivity function which changes sign twice in our domain of interest. W
We study a family of reaction-diffusion equations that present a doubly nonlinear character given by a combination of the $p$-Laplacian and the porous medium operators. We consider the so-called slow diffusion regime, corresponding to a degenerate be
We derive a backward and forward nonlinear PDEs that govern the implied volatility of a contingent claim whenever the latter is well-defined. This would include at least any contingent claim written on a positive stock price whose payoff at a possibl
Similarity solutions play an important role in many fields of science: we consider here similarity in stochastic dynamics. Important issues are not only the existence of stochastic similarity, but also whether a similarity solution is dynamically att
Biological invasion, whereby populations of motile and proliferative individuals lead to moving fronts that invade into vacant regions, are routinely studied using partial differential equation (PDE) models based upon the classical Fisher--KPP model.