ﻻ يوجد ملخص باللغة العربية
Distributed optimization is concerned with using local computation and communication to realize a global aim of optimizing the sum of local objective functions. It has gained wide attention for a variety of applications in networked systems. This paper addresses a class of constrained distributed nonconvex optimization problems involving univariate objective functions, aiming to achieve global optimization without requiring local evaluations of gradients at every iteration. We propose a novel algorithm named CPCA, exploiting the notion of combining Chebyshev polynomial approximation, average consensus and polynomial optimization. The proposed algorithm is i) able to obtain $epsilon$ globally optimal solutions for any arbitrarily small given accuracy $epsilon$, ii) efficient in terms of both zeroth-order queries (i.e., evaluations of function values) and inter-agent communication, and iii) distributed terminable when the specified precision requirement is met. The key insight is to use polynomial approximations to substitute for general objective functions, and turn to solve an easier approximate version of the original problem. Due to the nice analytic properties owned by polynomials, this approximation not only facilitates efficient global optimization, but also allows the design of gradient-free iterations to reduce cumulative costs of queries and achieve geometric convergence when nonconvex problems are solved. We provide comprehensive analysis of the accuracy and complexities of the proposed algorithm.
A major limitation of online algorithms that track the optimizers of time-varying nonconvex optimization problems is that they focus on a specific local minimum trajectory, which may lead to poor spurious local solutions. In this paper, we show that
A collection of optimization problems central to power system operation requires distributed solution architectures to avoid the need for aggregation of all information at a central location. In this paper, we study distributed dual subgradient metho
In this paper, we propose a distributed algorithm for stochastic smooth, non-convex optimization. We assume a worker-server architecture where $N$ nodes, each having $n$ (potentially infinite) number of samples, collaborate with the help of a central
Conic optimization is the minimization of a differentiable convex objective function subject to conic constraints. We propose a novel primal-dual first-order method for conic optimization, named proportional-integral projected gradient method (PIPG).
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of th