ترغب بنشر مسار تعليمي؟ اضغط هنا

Primal-dual $varepsilon$-Subgradient Method for Distributed Optimization

254   0   0.0 ( 0 )
 نشر من قبل Yutao Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of the local objective functions can not be accessed by the agents. To solve this problem, we propose a projected primal-dual dynamics using only the objective functions approximate subgradients. We first prove that the formulated optimization problem can only be solved with an approximate error depending upon the accuracy of the available subgradients. Then, we show the exact solvability of this optimization problem if the accumulated approximation error is not too large. After that, we also give a novel componentwise normalized variant to improve the transient behavior of the convergent sequence. The effectiveness of our algorithms is verified by a numerical example.



قيم البحث

اقرأ أيضاً

A collection of optimization problems central to power system operation requires distributed solution architectures to avoid the need for aggregation of all information at a central location. In this paper, we study distributed dual subgradient metho ds to solve three such optimization problems. Namely, these are tie-line scheduling in multi-area power systems, coordination of distributed energy resources in radial distribution networks, and joint dispatch of transmission and distribution assets. With suitable relaxations or approximations of the power flow equations, all three problems can be reduced to a multi-agent constrained convex optimization problem. We utilize a constant step-size dual subgradient method with averaging on these problems. For this algorithm, we provide a convergence guarantee that is shown to be order-optimal. We illustrate its application on the grid optimization problems.
This paper considers a general convex constrained problem setting where functions are not assumed to be differentiable nor Lipschitz continuous. Our motivation is in finding a simple first-order method for solving a wide range of convex optimization problems with minimal requirements. We study the method of weighted dual averages (Nesterov, 2009) in this setting and prove that it is an optimal method.
We consider a distributed optimization problem over a network of agents aiming to minimize a global objective function that is the sum of local convex and composite cost functions. To this end, we propose a distributed Chebyshev-accelerated primal-du al algorithm to achieve faster ergodic convergence rates. In standard distributed primal-dual algorithms, the speed of convergence towards a global optimum (i.e., a saddle point in the corresponding Lagrangian function) is directly influenced by the eigenvalues of the Laplacian matrix representing the communication graph. In this paper, we use Chebyshev matrix polynomials to generate gossip matrices whose spectral properties result in faster convergence speeds, while allowing for a fully distributed implementation. As a result, the proposed algorithm requires fewer gradient updates at the cost of additional rounds of communications between agents. We illustrate the performance of the proposed algorithm in a distributed signal recovery problem. Our simulations show how the use of Chebyshev matrix polynomials can be used to improve the convergence speed of a primal-dual algorithm over communication networks, especially in networks with poor spectral properties, by trading local computation by communication rounds.
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed primal-dual stochastic gradient descent~(SGD) equipped with powerball method to accelerate. We show that the proposed algorithm achieves the linear speedup convergence rate $mathcal{O}(1/sqrt{nT})$ for general smooth (possibly non-convex) cost functions. We demonstrate the efficiency of the algorithm through numerical experiments by training two-layer fully connected neural networks and convolutional neural networks on the MNIST dataset to compare with state-of-the-art distributed SGD algorithms and centralized SGD algorithms.
Dual decomposition is widely utilized in distributed optimization of multi-agent systems. In practice, the dual decomposition algorithm is desired to admit an asynchronous implementation due to imperfect communication, such as time delay and packet d rop. In addition, computational errors also exist when individual agents solve their own subproblems. In this paper, we analyze the convergence of the dual decomposition algorithm in distributed optimization when both the asynchrony in communication and the inexactness in solving subproblems exist. We find that the interaction between asynchrony and inexactness slows down the convergence rate from $mathcal{O} ( 1 / k )$ to $mathcal{O} ( 1 / sqrt{k} )$. Specifically, with a constant step size, the value of objective function converges to a neighborhood of the optimal value, and the solution converges to a neighborhood of the exact optimal solution. Moreover, the violation of the constraints diminishes in $mathcal{O} ( 1 / sqrt{k} )$. Our result generalizes and unifies the existing ones that only consider either asynchrony or inexactness. Finally, numerical simulations validate the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا