ترغب بنشر مسار تعليمي؟ اضغط هنا

Utilizing Mobile Nodes for Congestion Control in Wireless Sensor Networks

135   0   0.0 ( 0 )
 نشر من قبل Chryssis Georgiou
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Congestion control and avoidance in Wireless Sensor Networks (WSNs) is a subject that has attracted a lot of research attention in the last decade. Besides rate and resource control, the utilization of mobile nodes has also been suggested as a way to control congestion. In this work, we present a Mobile Congestion Control (MobileCC) algorithm with two variations, to assist existing congestion control algorithms in facing congestion in WSNs. The first variation employs mobile nodes that create locally-significant alternative paths leading to the sink. The second variation employs mobile nodes that create completely individual (disjoint) paths to the sink. Simulation results show that both variations can significantly contribute to the alleviation of congestion in WSNs.

قيم البحث

اقرأ أيضاً

203 - Moufida Maimour 2008
Wireless sensor networks hold a great potential in the deployment of several applications of a paramount importance in our daily life. Video sensors are able to improve a number of these applications where new approaches adapted to both wireless sens or networks and video transport specific characteristics are required. The aim of this work is to provide the necessary bandwidth and to alleviate the congestion problem to video streaming. In this paper, we investigate various load repartition strategies for congestion control mechanism on top of a multipath routing feature. Simulations are performed in order to get insight into the performances of our proposals.
146 - Feng Xia , Yu-Chu Tian , Yanjun Li 2008
Wireless sensor/actuator networks (WSANs) are emerging as a new generation of sensor networks. Serving as the backbone of control applications, WSANs will enable an unprecedented degree of distributed and mobile control. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. With emphasis on the reliability issue, this paper presents an application-level design methodology for WSANs in mobile control applications. The solution is generic in that it is independent of the underlying platforms, environment, control system models, and controller design. To capture the link quality characteristics in terms of packet loss rate, experiments are conducted on a real WSAN system. From the experimental observations, a simple yet efficient method is proposed to deal with unpredictable packet loss on actuator nodes. Trace-based simulations give promising results, which demonstrate the effectiveness of the proposed approach.
The Fifth Generation (5G) wireless service of sensor networks involves significant challenges when dealing with the coordination of ever-increasing number of devices accessing shared resources. This has drawn major interest from the research communit y as many existing works focus on the radio access network congestion control to efficiently manage resources in the context of device-to-device (D2D) interaction in huge sensor networks. In this context, this paper pioneers a study on the impact of D2D link reliability in group-assisted random access protocols, by shedding the light on beneficial performance and potential limitations of approaches of this kind against tunable parameters such as group size, number of sensors and reliability of D2D links. Additionally, we leverage on the association with a Geolocation Database (GDB) capability to assist the grouping decisions by drawing parallels with recent regulatory-driven initiatives around GDBs and arguing benefits of the suggested proposal. Finally, the proposed method is approved to significantly reduce the delay over random access channels, by means of an exhaustive simulation campaign.
Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particu lar, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support.
147 - Qiao Li , Yifei Wei , Mei Song 2016
An energy cooperation policy for energy harvesting wireless sensor networks (WSNs) with wireless power transfer is proposed in this paper to balance the energy at each sensor node and increase the total energy utilization ratio of the whole WSNs. Con sidering the unbalanced spatio-temporal properties of the energy supply across the deployment terrain of energy harvesting WSNs and the dynamic traffic load at each sensor node, the energy cooperation problem among sensor nodes is decomposed into two steps: the local energy storage at each sensor node based on its traffic load to meet its own needs; within the energy storage procedure sensor nodes with excess energy transmit a part of their energy to nodes with energy shortage through the energy trading. Inventory theory and game theory are respectively applied to solving the local energy storage problem at each sensor node and the energy trading problem among multiple sensor nodes. Numerical results show that compared with the static energy cooperation method without energy trading, the Stackelberg Model based Game we design in this paper can significantly improve the trading volume of energy thereby increasing the utilization ratio of the harvested energy which is unevenly distributed in the WSNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا