ﻻ يوجد ملخص باللغة العربية
For various purposes and, in particular, in the context of data compression, a graph can be examined at three levels. Its structure can be described as the unlabeled version of the graph; then the labeling of its structure can be added; and finally, given then structure and labeling, the contents of the labels can be described. Determining the amount of information present at each level and quantifying the degree of dependence between them, requires the study of symmetry, graph automorphism, entropy, and graph compressibility. In this paper, we focus on a class of small-world graphs. These are geometric random graphs where vertices are first connected to their nearest neighbors on a circle and then pairs of non-neighbors are connected according to a distance-dependent probability distribution. We establish the degree distribution of this model, and use it to prove the models asymmetry in an appropriate range of parameters. Then we derive the relevant entropy and structural entropy of these random graphs, in connection with graph compression.
Secure codes are widely-studied combinatorial structures which were introduced for traitor tracing in broadcast encryption. To determine the maximum size of such structures is the main research objective. In this paper, we investigate the lower bound
This work considers new entropy-based proofs of some known, or otherwise refined, combinatorial bounds for bipartite graphs. These include upper bounds on the number of the independent sets, lower bounds on the minimal number of colors in constrained
The determination of weight distribution of cyclic codes involves evaluation of Gauss sums and exponential sums. Despite of some cases where a neat expression is available, the computation is generally rather complicated. In this note, we determine t
In this paper, we study the emph{type graph}, namely a bipartite graph induced by a joint type. We investigate the maximum edge density of induced bipartite subgraphs of this graph having a number of vertices on each side on an exponential scale. Thi
Lattice-based Cryptography is considered to have the characteristics of classical computers and quantum attack resistance. We will design various graphic lattices and matrix lattices based on knowledge of graph theory and topological coding, since ma