ﻻ يوجد ملخص باللغة العربية
This work considers new entropy-based proofs of some known, or otherwise refined, combinatorial bounds for bipartite graphs. These include upper bounds on the number of the independent sets, lower bounds on the minimal number of colors in constrained edge coloring, and lower bounds on the number of walks of a given length in bipartite graphs. The proofs of these combinatorial results rely on basic properties of the Shannon entropy.
We consider the spectral gap of a uniformly chosen random $(d_1,d_2)$-biregular bipartite graph $G$ with $|V_1|=n, |V_2|=m$, where $d_1,d_2$ could possibly grow with $n$ and $m$. Let $A$ be the adjacency matrix of $G$. Under the assumption that $d_1g
A conventional context for supersymmetric problems arises when we consider systems containing both boson and fermion operators. In this note we consider the normal ordering problem for a string of such operators. In the general case, upon which we to
This note gives a detailed proof of the following statement. Let $din mathbb{N}$ and $m,n ge d + 1$, with $m + n ge binom{d+2}{2} + 1$. Then the complete bipartite graph $K_{m,n}$ is generically globally rigid in dimension $d$.
For various purposes and, in particular, in the context of data compression, a graph can be examined at three levels. Its structure can be described as the unlabeled version of the graph; then the labeling of its structure can be added; and finally,
The symmetries of complex molecular structures can be modeled by the {em topological symmetry group} of the underlying embedded graph. It is therefore important to understand which topological symmetry groups can be realized by particular abstract gr