ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Non-Interacting Fermions and Bosons in the Canonical Ensemble

116   0   0.0 ( 0 )
 نشر من قبل Hatem Barghathi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functions, and represents a unification of previous distinct approaches with many known results appearing as direct consequences of the developed mathematical structure. In addition, we introduce a general decomposition of the correlations between occupation numbers in terms of the occupation numbers of individual energy levels, that is valid for both non-degenerate and degenerate spectra. To demonstrate the applicability of the theory in the presence of degeneracy, we compute energy level correlations up to fourth order in a bosonic ring in the presence of a magnetic field.



قيم البحث

اقرأ أيضاً

308 - A. Crisanti , A. Sarracino , 2019
In this paper we take a fresh look at the long standing issue of the nature of macroscopic density fluctuations in the grand canonical treatment of the Bose-Einstein condensation (BEC). Exploiting the close analogy between the spherical and mean-sphe rical models of magnetism with the canonical and grand canonical treatment of the ideal Bose gas, we show that BEC stands for different phenomena in the two ensembles: an ordering transition of the type familiar from ferromagnetism in the canonical ensemble and condensation of fluctuations, i.e. growth of macroscopic fluctuations in a single degree of freedom, without ordering, in the grand canonical case. We further clarify that this is a manifestation of nonequivalence of the ensembles, due to the existence of long range correlations in the grand canonical one. Our results shed new light on the recent experimental realization of BEC in a photon gas, suggesting that the observed BEC when prepared under grand canonical conditions is an instance of condensation of fluctuations.
We generalize techniques previously used to compute ground-state properties of one-dimensional noninteracting quantum gases to obtain exact results at finite temperature. We compute the order-n Renyi entanglement entropy to all orders in the fugacity in one, two, and three spatial dimensions. In all spatial dimensions, we provide closed-form expressions for its virial expansion up to next-to-leading order. In all of our results, we find explicit volume scaling in the high-temperature limit.
236 - James F. Lutsko 2021
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to mass, e.g. canonical systems with fixed temperature and particle number. Although the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work, the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted geometries in arbitrary numbers of dimensions and finally a system of two hard-spheres in one dimension (hard rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.
We study statistical properties of $N$ non-interacting identical bosons or fermions in the canonical ensemble. We derive several general representations for the $p$-point correlation function of occupation numbers $overline{n_1cdots n_p}$. We demonst rate that it can be expressed as a ratio of two $ptimes p$ determinants involving the (canonical) mean occupations $overline{n_1}$, ..., $overline{n_p}$, which can themselves be conveniently expressed in terms of the $k$-body partition functions (with $kleq N$). We draw some connection with the theory of symmetric functions, and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a 1D harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground state and excited state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.
Using a Wigner function based approach, we study the Renyi entropy of a subsystem $A$ of a system of Bosons interacting with a local repulsive potential. The full system is assumed to be in thermal equilibrium at a temperature $T$ and density $rho$. For a ${cal U}(N)$ symmetric model, we show that the Renyi entropy of the system in the large $N$ limit can be understood in terms of an effective non-interacting system with a spatially varying mean field potential, which has to be determined self consistently. The Renyi entropy is the sum of two terms: (a) Renyi entropy of this effective system and (b) the difference in thermal free energy between the effective system and the original translation invariant system, scaled by $T$. We determine the self consistent equation for this effective potential within a saddle point approximation. We use this formalism to look at one and two dimensional Bose gases on a lattice. In both cases, the potential profile is that of a square well, taking one value in the subsystem $A$ and a different value outside it. The potential varies in space near the boundary of the subsystem $A$ on the scale of density-density correlation length. The effect of interaction on the entanglement entropy density is determined by the ratio of the potential barrier to the temperature and peaks at an intermediate temperature, while the high and low temperature regimes are dominated by the non-interacting answer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا