ترغب بنشر مسار تعليمي؟ اضغط هنا

Condensation vs Ordering: From the Spherical Models to BEC in the Canonical and Grand Canonical Ensemble

309   0   0.0 ( 0 )
 نشر من قبل Alessandro Sarracino
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we take a fresh look at the long standing issue of the nature of macroscopic density fluctuations in the grand canonical treatment of the Bose-Einstein condensation (BEC). Exploiting the close analogy between the spherical and mean-spherical models of magnetism with the canonical and grand canonical treatment of the ideal Bose gas, we show that BEC stands for different phenomena in the two ensembles: an ordering transition of the type familiar from ferromagnetism in the canonical ensemble and condensation of fluctuations, i.e. growth of macroscopic fluctuations in a single degree of freedom, without ordering, in the grand canonical case. We further clarify that this is a manifestation of nonequivalence of the ensembles, due to the existence of long range correlations in the grand canonical one. Our results shed new light on the recent experimental realization of BEC in a photon gas, suggesting that the observed BEC when prepared under grand canonical conditions is an instance of condensation of fluctuations.



قيم البحث

اقرأ أيضاً

107 - Marco Zannetti 2015
The so-called grand canonical catastrophe of the density fluctuations in the ideal Bose gas is shown to be a particular instance of the much more general phenomenon of condensation of fluctuations, taking place in a large system, in or out of equilib rium, when a single degree of freedom makes a macroscopic contribution to the fluctuations of an extensive quantity. The pathological character of the catastrophe is demystified by emphasizing the connection between experimental conditions and statistical ensembles, as demonstrated by the recent realization of photon condensation under grand canonical conditions.
We study statistical properties of $N$ non-interacting identical bosons or fermions in the canonical ensemble. We derive several general representations for the $p$-point correlation function of occupation numbers $overline{n_1cdots n_p}$. We demonst rate that it can be expressed as a ratio of two $ptimes p$ determinants involving the (canonical) mean occupations $overline{n_1}$, ..., $overline{n_p}$, which can themselves be conveniently expressed in terms of the $k$-body partition functions (with $kleq N$). We draw some connection with the theory of symmetric functions, and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a 1D harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground state and excited state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.
We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functio ns, and represents a unification of previous distinct approaches with many known results appearing as direct consequences of the developed mathematical structure. In addition, we introduce a general decomposition of the correlations between occupation numbers in terms of the occupation numbers of individual energy levels, that is valid for both non-degenerate and degenerate spectra. To demonstrate the applicability of the theory in the presence of degeneracy, we compute energy level correlations up to fourth order in a bosonic ring in the presence of a magnetic field.
Quantifying the statistics of occupancy of solvent molecules in the vicinity of solutes is central to our understanding of solvation phenomena. Number fluctuations in small `solvation shells around solutes cannot be described within the macroscopic g rand canonical framework using a single chemical potential that represents the solvent `bath. In this communication, we hypothesize that molecular-sized observation volumes such as solvation shells are best described by coupling the solvation shell with a mixture of particle baths each with its own chemical potential. We confirm our hypotheses by studying the enhanced fluctuations in the occupancy statistics of hard sphere solvent particles around a distinguished hard sphere solute particle. Connections with established theories of solvation are also discussed.
236 - James F. Lutsko 2021
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to mass, e.g. canonical systems with fixed temperature and particle number. Although the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work, the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted geometries in arbitrary numbers of dimensions and finally a system of two hard-spheres in one dimension (hard rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا